

Modern Methods in Associative Memory AM and Broader ML|AI

-

Parikshit Ram
IBM Research

How to think about Associative Memory Networks as a Machine Learning Model?

How to use them for standard Machine Learning tasks?

Chapter 5

Associative Memory:
A Machine Learning Model

$$f_{\mathbf{\Xi}}: \mathbb{R}^D \to \mathbb{R}^D$$

$$oldsymbol{\Xi} = [oldsymbol{\xi}^1, oldsymbol{\xi}^2, \dots, oldsymbol{\xi}^K], oldsymbol{\xi}^{\mu} \in \mathbb{R}^D$$
 Model is parameterized

$$E_{\beta}(\mathbf{v};\mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} F\left(\beta S\left[\mathbf{v},\boldsymbol{\xi}^{\mu}\right]\right) \right] \begin{tabular}{l} with stored patterns \\ Energy function defines the "model architecture" \\ \end{tabular}$$

Model is parameterized

Monotonic function

function

Separation Similarity b/w state & memory

$$f_{oldsymbol{\Xi}}: \mathbb{R}^D
ightarrow \mathbb{R}^D$$

$$\mathbf{z} = [\boldsymbol{\xi}^1, \boldsymbol{\xi}^2, \dots, \boldsymbol{\xi}^K], \boldsymbol{\xi}^\mu \in \mathbb{R}^D$$

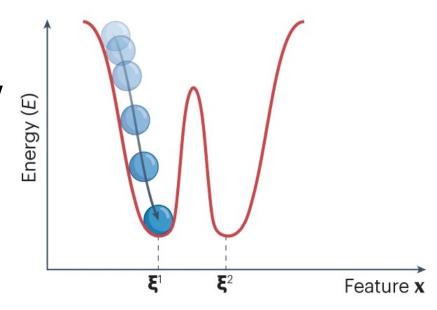
$$\mathbf{v}^{(0)} \leftarrow \mathbf{x},$$

$$\mathbf{v}^{(t)} \leftarrow \mathbf{v}^{(t-1)} - \eta \nabla_{\mathbf{v}} E_{\beta}(\mathbf{v}^{(t-1)}; oldsymbol{\Xi}), \quad t \in \llbracket T
rbracket,$$

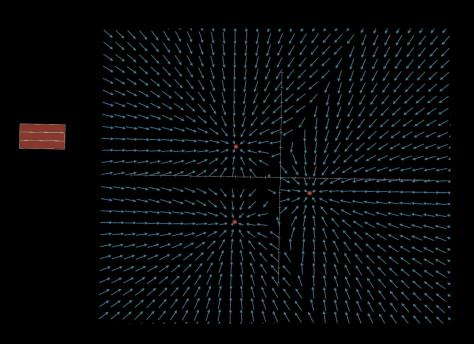
$$\mathbf{f}_{oldsymbol{\Xi}}(\mathbf{x}) \triangleq \mathbf{v}^{(T)}.$$
Inference (or the forward pass)
with a T-layer AM network is

Inference (or the forward pass) with a T-layer AM network is equivalent to T energy descent **steps** using the energy gradient.

- The energy of any state is inversely related to the probability of the state
- Inference via energy
 minimization or likelihood
 maximization



- More memories lead to more local minima of the energy *up to a point*
- More memories more
 parameters potentially
 more expressive model



Memory Capacity

The number of memories that can form distinct local minima of the energy

Classical Associative Memory

$$F(z) = z^2 \Rightarrow K^{\max} \sim O(D)$$

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} F(\beta S[\mathbf{v}, \boldsymbol{\xi}^{\mu}]) \right]$$

Dense Associative Memory

$$F(z) = z^N \Rightarrow K^{\max} \sim O(D^{N-1})$$

$$F(z) = \exp(z) \Rightarrow K^{\max} \sim O(\exp(D))$$

More memory capacity -- more model expressivity

But increased computational overhead!

Energy is a Kernel Sum

$$f_{\Xi}:\mathbb{R}^D
ightarrow\mathbb{R}^D$$

$$oldsymbol{\Xi} = [oldsymbol{\xi}^1, oldsymbol{\xi}^2, \dots, oldsymbol{\xi}^K], oldsymbol{\xi}^{\mu} \in \mathbb{R}^D$$

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} F(\beta S[\mathbf{v}, \boldsymbol{\xi}^{\mu}]) \right] = -Q \left[\sum_{\mu=1}^{K} \kappa(\mathbf{v}, \boldsymbol{\xi}^{\mu}) \right]$$

Kernel sum

$$F(\beta S[\mathbf{x}, \mathbf{x}']) \triangleq \kappa(\mathbf{x}, \mathbf{x}')$$

8

- Both **nonparametric**

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \boldsymbol{\xi}^{\mu} \right) \right]$$

- Kernel machines
 - Inference with a single kernel sum (usually)

Kernel sum

- Associative Memory networks
 - AM can be parametric
 - Kernel sum computes energy & inference via energy descent
 - Single inference (usually) needs multiple kernel sums
 - Need ability to differentiate through the kernel sums

9

Kernel machines

$$x \longrightarrow \sum_{\mu} \kappa(x, \xi^{\mu}) \longrightarrow \text{output}$$

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa\left(\mathbf{v}, \boldsymbol{\xi}^{\mu}\right) \right]$$

Kernel sum

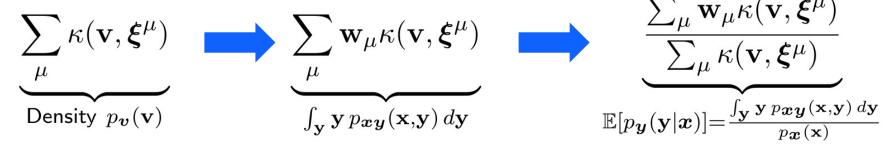
Associative Memory networks

$$\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} - \eta \nabla_{\mathbf{v}} Q[s]$$

$$\mathbf{x} \longrightarrow \mathbf{v}^{(0)} \longrightarrow \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \longrightarrow \text{output}$$

$$s = \sum_{\mu} \kappa(\mathbf{v}^{(t)}, \boldsymbol{\xi}^{\mu})$$

Kernel machines



Kernel machines can compute the **expectation of the conditional distribution.**

Associative Memory networks

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y}^{(t+1)} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y}^{(t)} \end{bmatrix} - \eta \begin{bmatrix} \mathbf{0}_{\boldsymbol{x}} \\ \mathbf{1}_{\boldsymbol{y}} \end{bmatrix} \odot \nabla_{\mathbf{v}} Q[s]$$

$$\begin{bmatrix} \mathbf{X} \\ \cdot \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{X} \\ \mathbf{y}^{(0)} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{X} \\ \cdot \end{bmatrix} \rightarrow \text{output}$$

$$s = \sum_{\mu} \kappa \left(\begin{bmatrix} \mathbf{x} \\ \mathbf{y}^{(t)} \end{bmatrix}, \boldsymbol{\xi}^{\mu} \right)$$

AM networks can find the **modes** of the conditional distribution.

- Both nonparametric

 $E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \boldsymbol{\xi}^{\mu} \right) \right]$

Kernel machines

Kernel sum

- o **O(KD)** storage and **O(KD)** time per inference
- Associative Memory networks
 - O(KD) storage and O(KDT) time per inference for a T-layer AM network

Can we draw inspiration from the rich literature on kernel machines?

- How can we adapt techniques for **efficient kernel machines** to AM?
- How can we utilize the various domain-specific kernels with unique properties to design novel energy functions, and how do these properties translate to AMs?
- What can we do with this "mode-finding" capability of AMs?

Are there other such connections?

How can AMs be used for other ML problems?

Inspiration for Kernel Machines

- Efficiency
- Mode-finding Capabilities
- Novel Energy Functions

Inspiration for Kernel Machines

- Efficiency
- Mode-finding Capabilities
- Novel Energy Functions

Memory Capacity & Storage

$$E(\mathbf{v}; \mathbf{\Xi}) = -\sum_{\mu=1}^{K} (\langle \mathbf{v}, \boldsymbol{\xi}^{\mu} \rangle)^2 = -\mathbf{v} T \mathbf{v}$$

$$oldsymbol{T} = \sum_{\mu=1}^K oldsymbol{\xi}^{\mu} (oldsymbol{\xi}^{\mu})^{ op}$$

$$O(KD) o O(D^2)$$
 Classical Hopfield energy

Disentangles number of memories from the number of model parameters needed to store them

(sub)Linear capacity

Memory Capacity & Storage

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -\frac{1}{\beta} \log \sum_{\mu=1}^{K} \exp\left(-\beta/2 \|\mathbf{v} - \boldsymbol{\xi}^{\mu}\|^{2}\right)$$

$$\kappa(\mathbf{v}, \boldsymbol{\xi}^{\mu}) = \exp\left(-\beta/2 \|\mathbf{v} - \boldsymbol{\xi}^{\mu}\|^2\right)$$

Log-sum-exp energy

Need all memories to compute the energy

Exponential capacity

Kernel Feature Maps

MrDAM Memory representation DenseAM

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \boldsymbol{\xi}^{\mu} \right) \right] \approx -Q \left[\sum_{\mu=1}^{K} \langle \phi(\mathbf{v}), \phi(\boldsymbol{\xi}^{\mu}) \rangle \right]$$

Explicit feature map

$$\phi: \mathbb{R}^D \to \mathbb{R}^Y$$

$$\kappa(\mathbf{x}, \mathbf{x}') \approx \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

$$= -Q \left[\left\langle \phi(\mathbf{v}) \left(\sum_{\mu=1}^{K} \phi(\boldsymbol{\xi}^{\mu}) \right) \right\rangle \right]$$

$$= -Q \left[\langle \phi(\mathbf{v}), \mathbf{T} \rangle \right]$$

DrDAM Distributed representation DenseAM

Distributed Memories

MrDAM energy: explicit memories

$$E_{eta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa\left(\mathbf{v}, \boldsymbol{\xi}^{\mu}\right) \right]$$

$$\phi: \mathbb{R}^D \to \mathbb{R}^Y$$

$$\kappa(\mathbf{x}, \mathbf{x}') \approx \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

DrDAM energy: distributed memories

$$E_{eta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \boldsymbol{\xi}^{\mu} \right) \right] \quad \tilde{E}_{eta}(\mathbf{v}; \boldsymbol{T}) = -Q \left[\left\langle \phi(\mathbf{v}), \boldsymbol{T} \right\rangle \right]$$
 $\phi : \mathbb{R}^{D} \to \mathbb{R}^{Y} \qquad \qquad \boldsymbol{T} = \sum_{\mu=1}^{K} \phi(\boldsymbol{\xi}^{\mu}) \in \mathbb{R}^{Y}$

$$\kappa(\mathbf{v}, \boldsymbol{\xi}^{\mu}) = \exp\left(-eta/2 \left\|\mathbf{v} - \boldsymbol{\xi}^{\mu} \right\|^2\right)$$

Infeasible infinite dimensional feature map

Random Approximate Feature Maps

Bochner's Theorem:

A shift-invariant kernel is positive definite if and only it is a Fourier transform of a positive measure

Fourier transform of a positive measure

$$\kappa(\mathbf{z}, \mathbf{z}') = \kappa(\mathbf{z} - \mathbf{z}') = \int_{\mathbb{R}^D} p(\boldsymbol{\omega}) \exp(j \langle \boldsymbol{\omega}, \mathbf{z} - \mathbf{z}' \rangle) d\omega$$

Shift-invariant Positive measure

For a positive definite shift-invariant kernel, there exists a such a positive measure

Random Features for Kernel Machines

$$\kappa(\mathbf{z}, \mathbf{z}') = \kappa(\mathbf{z} - \mathbf{z}') = \int_{\mathbb{R}^{D}} p(\boldsymbol{\omega}) \, e^{j\langle \boldsymbol{\omega}, \mathbf{z} - \mathbf{z}' \rangle} \, d\boldsymbol{\omega}$$

$$= \mathbb{E}_{\boldsymbol{\omega} \sim p} e^{j\langle \boldsymbol{\omega}, \mathbf{z} \rangle} \overline{e^{j\langle \boldsymbol{\omega}, \mathbf{z}' \rangle}}$$

$$= \mathbb{E}_{\boldsymbol{\omega} \sim p} \left\langle \begin{bmatrix} \cos \langle \boldsymbol{\omega}, \mathbf{z} \rangle \\ \sin \langle \boldsymbol{\omega}, \mathbf{z} \rangle \end{bmatrix}, \begin{bmatrix} \cos \langle \boldsymbol{\omega}, \mathbf{z}' \rangle \\ \sin \langle \boldsymbol{\omega}, \mathbf{z}' \rangle \end{bmatrix} \right\rangle$$

$$\approx \frac{1}{Y} \sum_{i=1}^{Y} \left\langle \begin{bmatrix} \cos \langle \boldsymbol{\omega}^{i}, \mathbf{z} \rangle \\ \sin \langle \boldsymbol{\omega}^{i}, \mathbf{z} \rangle \end{bmatrix}, \begin{bmatrix} \cos \langle \boldsymbol{\omega}^{i}, \mathbf{z}' \rangle \\ \sin \langle \boldsymbol{\omega}^{i}, \mathbf{z}' \rangle \end{bmatrix} \right\rangle$$

$$\Phi(\mathbf{x}) = \frac{1}{\sqrt{Y}} \begin{bmatrix} \cos(\langle \boldsymbol{\omega}^1, \mathbf{x} \rangle) \\ \sin(\langle \boldsymbol{\omega}^1, \mathbf{x} \rangle) \\ \cos(\langle \boldsymbol{\omega}^2, \mathbf{x} \rangle) \\ \sin(\langle \boldsymbol{\omega}^2, \mathbf{x} \rangle) \\ \cdots \\ \cos(\langle \boldsymbol{\omega}^Y, \mathbf{x} \rangle) \\ \sin(\langle \boldsymbol{\omega}^Y, \mathbf{x} \rangle) \end{bmatrix}$$

Random features if we know the positive measure

$$= \langle \Phi(\mathbf{z}), \Phi(\mathbf{z}') \rangle$$

Random Features for Associative Memories

$$E = -\log\left(\sum_{\mu} \exp(-rac{1}{2}||oldsymbol{\xi}^{\mu} - \mathbf{x}||_2^2)
ight)$$

Distributed Memories with Random Features

MrDAM energy: explicit memories

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \boldsymbol{\xi}^{\mu} \right) \right]$$

$$O(KD) \to O(Y) = O(D/\epsilon^2)$$

Disentangles number of memories from the number of model parameters needed to store them

DrDAM energy: distributed memories

$$\tilde{E}_{\beta}(\mathbf{v}; \mathbf{T}) = -Q \left[\langle \Phi(\mathbf{v}), \mathbf{T} \rangle \right]
\mathbf{T} = \sum_{\mu=1}^{K} \Phi(\boldsymbol{\xi}^{\mu}) \in \mathbb{R}^{Y}
Y \sim O(D/\epsilon^{2})
|\kappa(\mathbf{z}, \mathbf{z}') - \langle \Phi(\mathbf{z}), \Phi(\mathbf{z}') \rangle| \le \epsilon$$

Approximation in Energy Descent

MrDAM energy: exact dynamics

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \boldsymbol{\xi}^{\mu} \right) \right]$$

$$\mathbf{v}^{(t)} \leftarrow \mathbf{v}^{(t-1)} - \eta \nabla_{\mathbf{v}} E_{\beta}(\mathbf{v}^{(t-1)}; \mathbf{\Xi}) \qquad \tilde{\mathbf{v}}^{(t)} \leftarrow \tilde{\mathbf{v}}^{(t-1)} - \eta \nabla_{\mathbf{v}} \tilde{E}_{\beta}(\mathbf{v}^{(t-1)}; \mathbf{T})$$

What is the approximation in the DenseAM output?

DrDAM energy: approx dynamics

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \boldsymbol{\xi}^{\mu} \right) \right] \qquad \tilde{E}_{\beta}(\mathbf{v}; \boldsymbol{T}) = -Q \left[\left\langle \Phi(\mathbf{v}), \boldsymbol{T} \right\rangle \right]$$

$$\boldsymbol{T} = \sum_{\mu=1}^{K} \Phi(\boldsymbol{\xi}^{\mu}) \in \mathbb{R}^{Y}$$

$$\left\|\mathbf{v}^{(T)} - \tilde{\mathbf{v}}^{(T)}\right\| \le ?$$

Approximation in Energy Descent

MrDAM energy: exact dynamics

$$\mathbf{v}^{(t)} \leftarrow \mathbf{v}^{(t-1)} - \eta \nabla_{\mathbf{v}} E_{\beta}(\mathbf{v}^{(t-1)}; \mathbf{\Xi})$$

Random feature approx bound

$$\left|\kappa(\mathbf{z}, \mathbf{z}') - \left\langle \Phi(\mathbf{z}), \Phi(\mathbf{z}') \right\rangle\right| \le C_1 \sqrt{D/Y}$$

DrDAM energy: approx dynamics

$$\tilde{\mathbf{v}}^{(t)} \leftarrow \tilde{\mathbf{v}}^{(t-1)} - \eta \nabla_{\mathbf{v}} \tilde{E}_{\beta}(\mathbf{v}^{(t-1)}; T)$$

Sufficiently small step-size

$$\eta \le \frac{C_2}{T(1 + 2K\beta \exp(\beta/2))}$$

Initial energy

$$\left\|\mathbf{v}^{(T)} - \tilde{\mathbf{v}}^{(T)}\right\| \le \frac{C_1 C_2 \exp(\beta (E_\beta(\mathbf{v}; \mathbf{\Xi}) - 1/2))}{\beta (1 - C_2)}$$

Dense Associative Memory Through the Lens of Random Features

polo@gatech.edu

Associative Memory Tutorial

Benjamin Hoover

IBM Research: Georgia Tech benjamin.hoover@ibm.com

Duen Horng Chau Hendrik Strobelt Georgia Tech

IBM Research: MIT-IBM hendrik.strobelt@ibm.com

Parikshit Ram

parikshit.ram@ibm.com

Dmitry Krotoy

IBM Research krotov@ibm.com

IBM Research

Getting started

Pokemon Sprites

Binary Dense Storage

Memory and Diffusion

Distributed Memory

Energy Transformer

lib

tutorial

Open in Colab

In this notebook, we demonstrate how we utilize random features to disentangle the size of the Dense Associative Memory network from the number of memories to be stored. Given the standard logsum-exp energy $E_{\beta}(\cdot;\Xi)$, corresponding to a model f_{Ξ} of size O(DK), we demonstrate how we can use the trigonometric random features to develop an approximate energy $\tilde{E}_{\beta}(\cdot;\mathbf{T})$ using a distributed representation T of the memories $\Xi = \{ \boldsymbol{\xi}^{\mu}, \mu \in \llbracket K \rrbracket \}$, thus giving us a model f_T of size O(Y).

Distributed Memory

Random Features enable Dense Associative Memory to store patterns in a distributed manner across a large number of neurons.

Report an issue

On this page

Exact Energy Function

Gradient Descent

Random Features

Visualizing the Energy in 2D

Viewing Energy as a Kernel Sum

Approximating the Energy with

Minimizing the Energy via

Other Formats

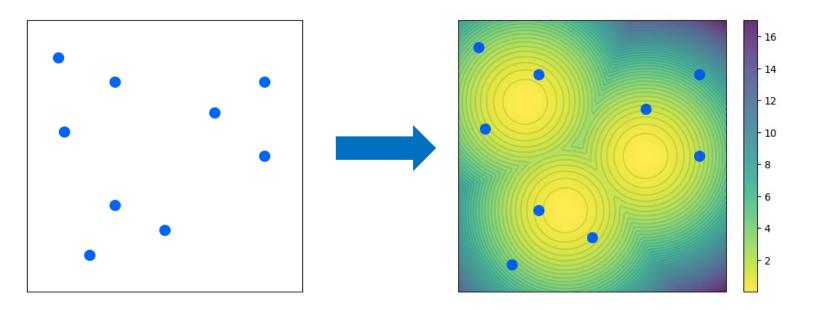
□ CommonMark

Inspiration for Kernel Machines

- Efficiency
- Mode-finding Capabilities
- Novel Energy Functions

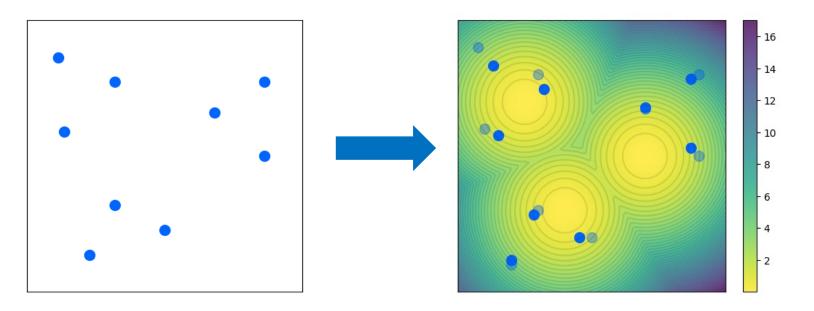
- Layer operates on inputs independently
- But can exhibit collective contraction

$$f_{\mathbf{\Xi}}: \mathbb{R}^D o \mathbb{R}^D$$



- Layer operates on inputs independently
- But can exhibit collective contraction

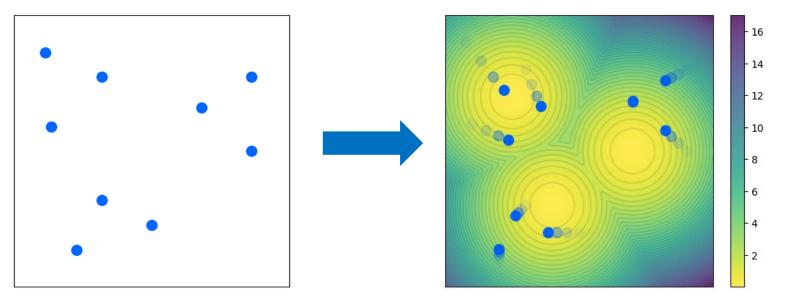
$$f_{\mathbf{\Xi}}: \mathbb{R}^D o \mathbb{R}^D$$



- Layer operates on inputs independently

$$f_{\mathbf{\Xi}}:\mathbb{R}^D
ightarrow \mathbb{R}^D$$

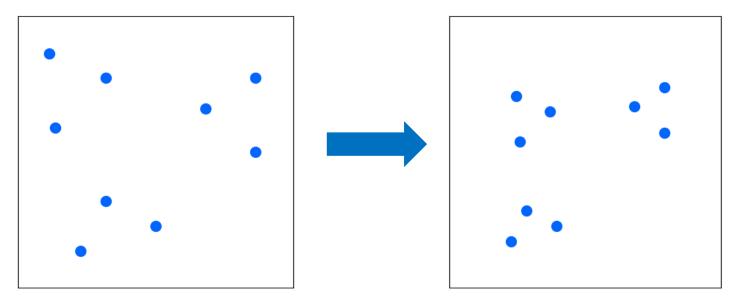
 But can exhibit collective contraction by contracting towards modes



- Layer operates on inputs independently

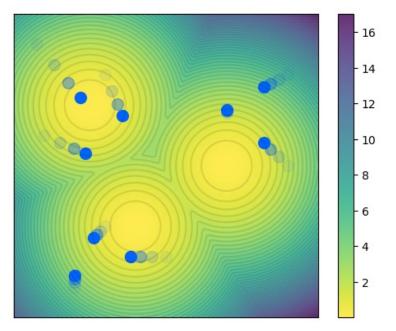
$$f_{\mathbf{\Xi}}: \mathbb{R}^D o \mathbb{R}^D$$

 But can exhibit collective contraction by contracting towards modes



- Parameters of the AM control locations of the minima (modes)
- Thus, where the inputs contract towards

$$f_{\Xi}: \mathbb{R}^D \to \mathbb{R}^D$$



Clustering

Discrete k-means clustering

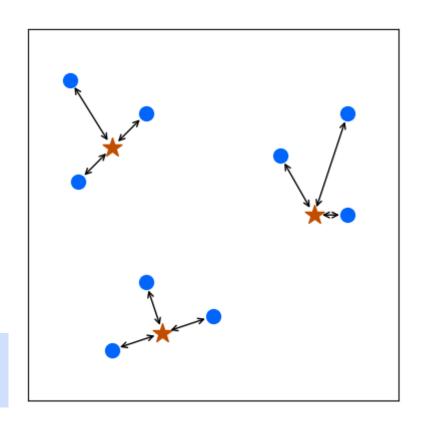
Points to cluster

$$\min_{\mathbf{c}^1,...,\mathbf{c}^k \in \mathbb{R}^D} \sum_{i=1}^m \min_{j \in \llbracket k
rbracket} \left\| \mathbf{x}^i - \mathbf{c}^j
ight\|^2$$

Centers

Distance to closest center

Discrete optimization – we need discrete assignments to clusters



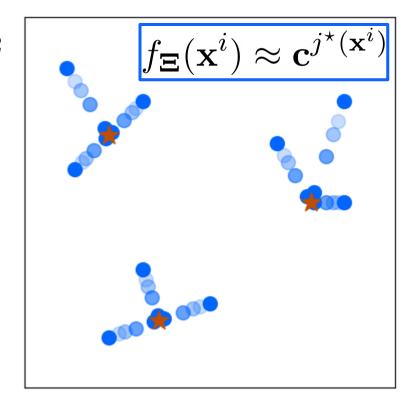
Clustering with Associative Memories

$$\min_{\mathbf{c}^1,...,\mathbf{c}^k \in \mathbb{R}^D} \sum_{i=1}^m \min_{j \in \llbracket k
rbracket} \left\| \mathbf{x}^i - \mathbf{c}^j
ight\|^2$$

Main idea: Use contraction to emulate discrete assignment

$$\min_{\Xi} \sum_{i=1}^{m} \left\| \mathbf{x}^{i} - f_{\Xi}(\mathbf{x}^{i}) \right\|^{2}$$

Differentiable discrete clustering objective



End-to-end Differentiable Clustering with Associative Memories

Bishwajit Saha¹ Dmitry Krotov² Mohammed J. Zaki¹ Parikshit Ram²³

Deep Clustering with Associative Memories

Main idea: Use contraction to learn a clustered latent space

$$\begin{array}{c} \boldsymbol{x} \xrightarrow{\mathsf{encode}} e_{\varphi}(\boldsymbol{x}) \xrightarrow{\mathsf{contract}} f_{\boldsymbol{\Xi}} \circ e_{\varphi}(\boldsymbol{x}) \xrightarrow{\mathsf{decode}} d_{\vartheta} \circ f_{\boldsymbol{\Xi}} \circ e_{\varphi}(\boldsymbol{x}) \\ & & & \\ & &$$

Single differentiable objective handling both **fidelity of learned** representations and the collective clustered structure

← Go to ICLR 2025 Workshop NFAM homepage

Deep Clustering with Associative Memories

Bishwajit Saha, Dmitry Krotov, Mohammed J Zaki, Parikshit Ram

Opportunities

Inspiration for Kernel Machines

- Efficiency
- Mode-finding Capabilities
- Novel Energy Functions

AM2025@ICML | July 14, 2025

Energy Functions

$$f_{oldsymbol{\Xi}}: \mathbb{R}^D o \mathbb{R}^D$$
 $oldsymbol{\Xi} = [oldsymbol{\xi}^1, oldsymbol{\xi}^2, \ldots, oldsymbol{\xi}^K], oldsymbol{\xi}^\mu \in \mathbb{R}^D$ Model is parameterized

$$E_{\beta}(\mathbf{v};\mathbf{\Xi}) = -Q \left[\sum_{\mu=1}^{K} \kappa \left(\mathbf{v}, \pmb{\xi}^{\mu} \right) \right] \ \, \frac{\text{Energy function}}{\text{defined by the kernel}}$$

- Gaussian kernel -- the log-sum-exp or LSE energy
- Kernel uses exponential separation with exponential capacity
- Is that enough to make it a "good" kernel function?

Insights from Density Estimation

$$oldsymbol{\Xi} = [oldsymbol{\xi}^1, oldsymbol{\xi}^2, \dots, oldsymbol{\xi}^K], oldsymbol{\xi}^{\mu} \in \mathbb{R}^D$$

$$\boldsymbol{\xi}^{\mu} \sim p_{\mathrm{data}}, \mu \in [\![K]\!]$$

Kernel density estimate or KDE given samples from a distribution

$$\hat{p}_h(\mathbf{v}; \mathbf{\Xi}) = \frac{1}{Kh} \sum_{\mu=1}^K \kappa \left(\frac{\mathbf{v} - \boldsymbol{\xi}^{\mu}}{h} \right)$$

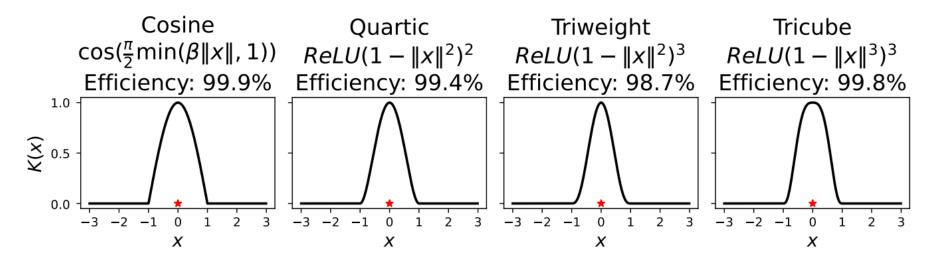
Mean Integrated Squared Error

$$\mathsf{MISE}(h) = \mathbb{E}\left[\int_v (\hat{p}_h(v; \mathbf{\Xi}) - p_{\mathrm{data}}(v))^2 dv\right] \sim O\left(\left(\sqrt{\int_z z^2 \kappa(z) \, dz} \int_z \kappa(z)^2 \, dz\right)^{\frac{4}{5}}\right)$$

$$\mathsf{Bias} \quad \mathsf{Variance}$$

Kernels and their Efficiencies

$$\sqrt{\int_{\mathbf{z}} \mathbf{z}^2 \, \kappa(\mathbf{z}) \, d\mathbf{z}} \int_{\mathbf{z}} \kappa(\mathbf{z})^2 \, d\mathbf{z}$$



For density estimation

- Gaussian kernel is not the best; many other better
- Epanechnikov kernel known to be optimal

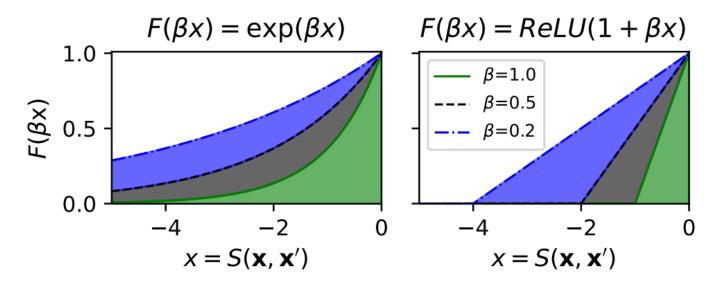
Log-Sum-Shifted-ReLU or LSR Energy

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -\frac{1}{\beta} \log \sum_{\mu=1}^{K} \exp\left(-\beta/2 \|\mathbf{v} - \boldsymbol{\xi}^{\mu}\|^{2}\right)$$

$$E_{\beta}(\mathbf{v}; \mathbf{\Xi}) = -\frac{1}{\beta} \log \sum_{\mu=1}^{K} \operatorname{ReLU} \left(1 - \beta/2 \|\mathbf{v} - \boldsymbol{\xi}^{\mu}\|^{2} \right)$$

- Exponential capacity without exponential separation function
- Simultaneously retrieves memories **and** generates many new local minima

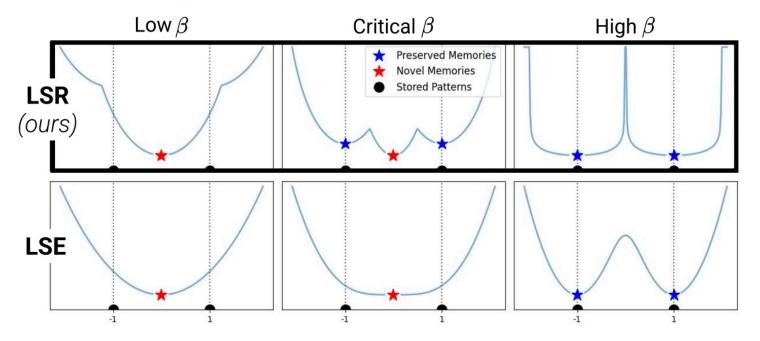
Log-Sum-Shifted-ReLU or LSR Energy

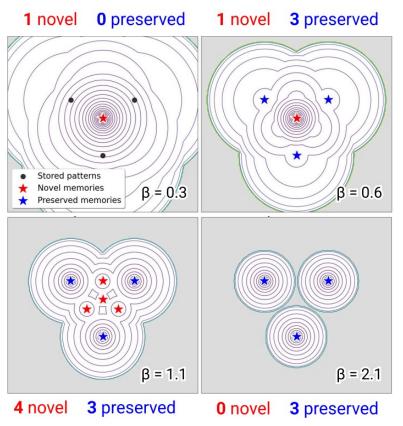


- Exponential capacity without exponential separation function
- Simultaneously retrieves memories and generates many new local minima

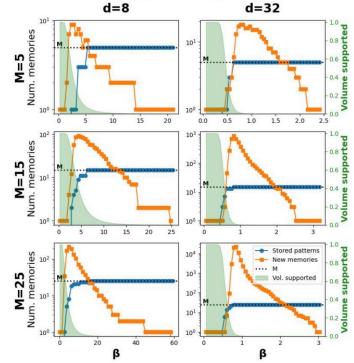
LSR preserves memories while creating novel ones.

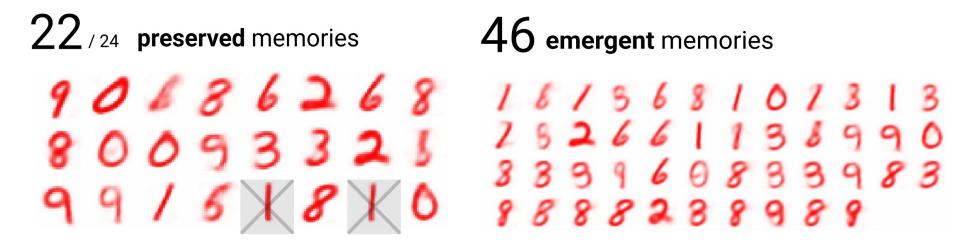
LSE can do only one or the other.





LSR Energy creates novel memories while preserving stored patterns





 $40_{/40}$ preserved memories

38 emergent memories

← Go to ICLR 2025 Workshop NFAM homepage

Dense Associative Memory with Epanechnikov energy

Benjamin Hoover, Krishna Balasubramanian, Dmitry Krotov, Parikshit Ram

How to think about Associative Memory Networks as a Machine Learning Model?

How to use them for standard Machine Learning tasks?

Chapter 5

Associative Memory:
A Machine Learning Model