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Associative Memory Networks
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Krotov & Hopfield. "Dense Associative Memories for Pattern Recognition." NeurIPS 2016.
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Associative Memory Networks
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v D gy By (v E), e [T],
- A& (T Inference (or the forward pass)
f= (X) =V with a T-layer AM network is

equivalentto T energy descent
steps using the energy gradient.
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Associative Memory Networks

- The energy of any state is
inversely related to the probability

of the state

Energy (E)

- Inference via energy

minimization — or likelihood

>

maximization 3 g2 Feature X

AM2025@ICML | July 14, 2025 Krotov. "A New Frontier for Hopfield networks." Nature Reviews Physics (2023).



Assoclative Memory Networks
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Hoover, et al. "Dense Associative Memories through the Lens of Random Features." NeurIPS 2024.
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Memory Capacity

The number of memories that can form distinct local minima of the energy

Classical Associative Memory K
Eg(viE) = — F (BS |v,&
F(Z) _ 252 — Kmax ~ O(D) ﬁ(v ) Q Mz_:l (6 [V 3 ])
More memory
Dense Associative Memory capacity --
N max N—1 more model
F(z)=2" =K ~ O(D ) expressivity
F(z) =exp(z) = K™ ~ O(exp(D)) But increased
computational
overhead!

AM2025@ICML | July 14, 2025 Krotov. "A New Frontier for Hopfield networks." Nature Reviews Physics (2023).



Energy is a Kernel Sum
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AMs and Kernel Machines

- Both nonparametric -
Es(viB)=-Q | > r(v,&")

- Kernel machines u=1
o Inference with a single kernel sum (usually) Kernel sum

Associative Memory networks

o AM can be parametric
o Kernel sum computes energy & inference via energy descent
o Single inference (usually) needs multiple kernel sums

o Need ability to differentiate through the kernel sums



AMs and Kernel Machines

. K
Kernel machines Fs(viB) = —Q |:ZE(V’€M>:|
T — Zu k(x, &) — output p=1

1]

Kernel sum

Associative Memory networks

vt = vl — v, Qls]
r —v0) —3 C ) —— output
s =3, k(v &)
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AMs and Kernel Machines

Kernel machines

S, Wuk(v, €)
258 mmp > wuk(vE) mmp S
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Density po(v) [, ¥ pay (xiy) dy Elpy (y]2)]= 2222y O

Kernel machines can
compute the expectation of
the conditional distribution.



AMs and Kernel Machines

Associative Memory networks

X B X Ox
yt+D | = |y —n 1, OVyvQls]

S = Z,u K ([y?t)} a&“)

AM networks can find the modes
of the conditional distribution.



AMs and Kernel Machines

- Both nonparametric -
Es(viB)=-Q | > r(v,&")

- Kernel machines u=1
o O(KD) storage and O(KD) time per inference Kernel sum

Associative Memory networks
o O(KD) storage and O(KDT) time per inference

for a T-layer AM network



Opportunities

Can we draw inspiration from the rich literature on kernel machines?

- How can we adapt techniques for efficient kernel machines to AM?

- How can we utilize the various domain-specific kernels with unique
properties to design novel energy functions, and how do these
properties translate to AMs?

- What can we do with this "mode-finding" capability of AMs?

Are there other such connections?

How can AMs be used for other ML problems?

AM2025@ICML | July 14, 2025 14



Opportunities

Inspiration for Kernel Machines

Efficiency

Mode-finding Capabilities

Novel Energy Functions
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Memory Capacity & Storage

K 2
BviZ) = -3 ((v,&")* = —vrv| OUD) = 0D
=1 Classical Hopfield energy
K :
Disentangles number of
T = Z gh(em) ! memories from the number
=1 of model parameters

needed to store them

(sub)Linear capacity

m2025@IcML | uy 14,2025 Hopfield. "Neural Networks and Physical Systems with Emergent Collective Computational Abilities." PNAS 1982. 17



Memory Capacity & Storage

Eg(viE) = -7 logzexp (52 1lv — &)

Log-sum-exp energy

my _ _ |2
k(V, & )_exp( B2 ||v — &¥| ) Need all memories to

AM2025 @ICML | July 14 , 2025

compute the energy

Exponential capacity

Demircigil et al. "On a Model of Associative Memory with Huge Storage Capacity." J. Statistical Physics. 2017.
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Kernel Feature Maps

MrDAM Memory representation DenseAM

i g
Eg(viB)=-Q | > r(v,&"
_'UJ:1 .

Explicit feature map

6 : RP —» RY
(x,x') = (p(x), p(x))

DrDAM Distributed representation DenseAM

zzzzzz @ICML | July 14, 2025 Hoover, et al. "Dense Associative Memories through the Lens of Random Features." NeurIPS 2024.
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Distributed Memories

MrDAM energy: explicit memories  DrDAM energy: distributed memories

Es(viE)=—-Q |Y w(v.€")| Eg(v;T)=—-Q[(¢(v),T)]

K
¢ RP - RY T=Z¢(£“)6RY
r(x, X') ~ ($(x), 6(x)) =

my B a2 Infeasible infinite
kv, € )—exp( o2 llv — &7 ) dimensional feature map

zzzzzz @ICML | July 14, 2025 Hoover, et al. "Dense Associative Memories through the Lens of Random Features." NeurIPS 2024. 20



Random Approximate Feature Maps

Bochner's Theorem:
A shift-invariant kernel is positive definite if and only it is
a Fourier transform of a positive measure  fgoyrier transform of

a positive measure

k(z,z) =k(z —2') = /]RD p(w) exp(j (w,z —2')) dw

Shift-invariant Positive measure

For a positive definite shift-invariant kernel,
there exists a such a positive measure

AM2025@ICML | July 14, 2025 Rahimi & Recht. "Random Features for Kernel Machines." NeurIPS 2007. 21



Random Features for Kernel Machines

k(z,2') = k(z —2') = / p(w) 7272 dy
RD

— Ew~p€j<w’z>6~7<w’zl>
cos (w,z)| |cos(w,z) ‘ ,

= Eoop A B Py
S, 2 SHLW, 2 Random features

1 Y < {COS <wi, z>} [cos <w7j’ Z/q > if w.e.know the
~ — Z , positive measure

Y <=\ |sin (w',z) sin (w', z")

= (2(2),2())

zzzzzz @ICML | July 14, 2025 Rahimi & Recht. "Random Features for Kernel Machines." NeurIPS 2007. 22



Random Features for Associative Memories

B = log <Z exp(—éns“—xH%))
U

MMMMMMMMMMMMMMMMM ,2025 Hoover, et al. "Dense Associative Memories through the Lens of Random Features." NeurIPS 2024. 23



Distributed Memories with Random Features

MrDAM energy: explicit memories  DrDAM energy: distributed memories

e _
Es(viE) =—-Q | > k(v,&")| Eg(v;T)=-Q[®(v),T)]
- S T =) 9" eR”

Y ~ O(D/e?)

memories from the number of |R(Z, z') — <(I’(Z)7 q’(zl)ﬂ < €
model parameters needed to
store them

O(KD) — O(Y) = O(D/é?)

Disentangles number of

zzzzzz @ICML | July 14, 2025 Hoover, et al. "Dense Associative Memories through the Lens of Random Features." NeurIPS 2024. 24



Approximation in Energy Descent

MrDAM energy: exact dynamics DrDAM energy: approx dynamics

- -
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What is the approximation (T)  ~(T) o
in the DenseAM output? HV \4 <

zzzzzz @ICML | July 14, 2025 Hoover, et al. "Dense Associative Memories through the Lens of Random Features." NeurIPS 2024. 25



Approximation in Energy Descent

MrDAM energy: exact dynamics DrDAM energy: approx dynamics
v =1 anEg(V(t_l); =) vt =1 _ nvvﬁﬁ(v(t_l); T)

Random feature approx bound Sufficiently small step-size
|k(z,2)) — (®(z),®(z))| < C1/D/Y C2

"= T T 2K Bexp(3/2))

Initial energy
vin o] < GG oROEs(viE) ~ )
B(1—Cy)

zzzzzz @ICML | July 14, 2025 Hoover, et al. "Dense Associative Memories through the Lens of Random Features." NeurIPS 2024. 26




Dense Associative Memory Through the Lens of
Random Features

n
Benjamin Hoover Duen Horng Chau Hendrik Strobelt E
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On this page
Associative Memory Tutorial Distributed Memory Exact Energy Functic
(lSettmg started L. . Visualizing the Energy in 2D
lib . Random Features enable Dense Associative Memory to store patterns ina Minimizing the Energy via
Pokemon Sprites distributed manner across a large number of neurons. Gradient Descent
tutorial . Viewing Energy as a Kernel Sum
Binary Dense Storage Approximating the Energy with
Energy Transformer Random Features
Memory and Diffusion In this notebook, we demonstrate how we utilize random features to disentangle the size of the Dense o
. . . R tani
Distributed Memory Associative Memory network from the number of memories to be stored. Given the standard log- eportanissue
sum-exp energy E3(+; 2), corresponding to a model fz of size O( DK ), we demonstrate how we Other Formats

can use the trigonometric random features to develop an approximate energy E3(+; T) usinga (& CommonMark

distributed representation T of the memories = = {&", . € K]}, thus giving us amodel fr of
sizeO(Y).

AM2025@ICML | July 14, 2025
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Contractive Layer

- Layer operates on inputs independently
- But can exhibit collective contraction

AM2025@ICML | July 14, 2025
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Contractive Layer

- Layer operates on inputs independently
- But can exhibit collective contraction
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Contractive Layer

- Layer operates on inputs independently
- But can exhibit collective contraction
by contracting towards modes

AM2025@ICML | July 14, 2025
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Contractive Layer

- Layer operates on inputs independently
But can exhibit collective contraction
by contracting towards modes

fz:RP 5 RP

—)
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Contractive Layer

- Parameters of the AM control locations of the minima (modes)
- Thus, where the inputs contract towards

AM2025@ICML | July 14, 2025
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Clustering

Discrete k-means clustering

Points to cluster

. i j 2
mln E 11in HX — C H
1

..,ck E]RD ]E[[k]]

Distance to
closest center

Centers

Discrete optimization — we need
discrete assighments to clusters

AM2025@ICML | July 14, 2025
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Clustering with Associative Memories

m

. . i 7112
min min HX — C H
cl,....ckFeRP 1 jE[k]

Main idea: Use contraction to
emulate discrete assignment

min ) [|x' — f=(x')]
= =1

Differentiable discrete
clustering objective

fa(x') =
Q.
® o
.
O

AM2025@ICML | July 14, 2025 Saha, et al. "End-to-End Differentiable Clustering with Associative Memories." ICML 2023.
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End-to-end Differentiable Clustering with Associative Memories

Bishwajit Saha' Dmitry Krotov? Mohammed J. Zaki' Parikshit Ram 23

AM2025@ICML | July 14, 2025



Deep Clustering with Associative Memories

Main idea: Use contraction to learn a clustered latent space

- encode> 690(213) contract> fE - 690(33) decode> dﬁ - fE 5 e¢(w)

min Z |z — dy o fzoe,(x z)||?

907‘—‘7

Single differentlable objective handling both fidelity of learned
representations and the collective clustered structure

AM2025@ICML | July 14, 2025 Saha, et al. "Deep Clustering with Associative Memories." NFAM@ICLR 2025. 37



< Go to ICLR 2025 Workshop NFAM homepage

Deep Clustering with Associative Memories
Bishwajit Saha, Dmitry Krotov, Mohammed | Zaki, Parikshit Ram

AM2025@ICML | July 14, 2025
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Energy Functions

fERD%RD E:[€17€27'°'7

K
Eg(v;E) = -Q Z v, &)

K D
§°,€"eR
Model is parameterized
with stored patterns

Energy function
defined by the kernel

- Gaussian kernel -- the log-sum-exp or LSE energy
- Kernel uses exponential separation with exponential capacity
- Is that enough to make it a "good" kernel function?

M2025@ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025. 40



Insights from Density Estimation

== (¢l €2 ... e8], ¢t e RP &' ~ pdata 1t € [K]

Kernel density estimate or KDE given samples from a distribution

K
ﬁh(v;E):L K(V—gﬂ)

Kh h
u=1

Mean Integrated Squared Error

MISE(h) = E {/(ph( =) — Pdata(v))” dv ~ 0 (<\// dz>§)

Bias Variance

zzzzzz @ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025. 41



Kernels and their Efficiencies \//Zz,i(z) dZ/,ﬁ;(Zydz

Cpsine Quartic Triweight Tricube
cos(Gmin(B|Ix|l, 1)) ReLU(1 —|Ix[|2)2 ReLU(1—|x||?)® ReLU(1 - |x|3)3
Efficiency: 99.9% Efficiency: 99.4% Efficiency: 98.7% Efficiency: 99.8%

1.0 f

X 05 -
AV
0‘0—| T T * T L] 1 —I T Ll * L Ll T —l T T * T T L _l Ll T * T L T
3 -2-10 1 2 3 -3-2-10 1 2 3 =-3-2-10 1 2 3 -3-2-10 1 2 3
X X X X

For density estimation
- Gaussian kernel is not the best; many other better
- Epanechnikov kernel known to be optimal

AM2025@ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025. 42



Log-Sum-Shifted-ReLU or LSR Energy

1

B3(v;8) =~ logzexp (=52 Ilv - &)

Es(vi E) = —% log Z ReLU (1 - 52 v - )
pn=1

- Exponential capacity without exponential separation function
- Simultaneously retrieves memories and generates many new
local minima

zzzzzz @ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025. 43



Log-Sum-Shifted-ReLU or LSR Energy

F(Bx) = exp(Bx) F(Bx) =ReLU(1 + Bx)

—— B=1.0
--- B=0.5
—.— B=0.2

xX=5(x, x) xX=5(x, x/)

- Exponential capacity without exponential separation function
- Simultaneously retrieves memories and generates many new
local minima

AM2025@ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025. 44



Epanechnikov Energy and Emergent Memories

LSR preserves memories while creating novel ones.
LSE can do only one or the other.

Low 3 Critical 8 High 8
I : Y Preserved Memories :
. Y Novel Memories
LSR @ Stored Paétterns
(ours) ? f '
,
58

* * e
I z * : ; * z . *
S s i D e —

LSE
R wll ——" * *
- - - - - -
1 1 -1 18 -1 1

AM2025@ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025.



Epanechnikov Energy and Emergent Memories

1 novel Opreserved 1novel 3preserved LSR Energy creates novel memories
— ) — . while preserving stored patterns
d=8 d=32
£ ‘9
=: :
2 s

e Stored patterns
Y Novel memories

Num. memories
5 s 5
B ki & & @ o
Volume supported

’ '3

910 st

3 <]

N5 °§
% € 10 g
10Y { % s . O>

0 20 40 60 (] L 2
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AM2025@ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025.
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Epanechnikov Energy and Emergent Memories

22/24 preserved memories 46 emergent memories
§O4F 6268 1£6/5681017313
8009332l 3339608233983
A9/ 6§ K&Z KO 9282288952879

o2 éE | 02

Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025. 47
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Epanechnikov Energy and Emergent Memories

40/ 40 preserved memories 38 emergent memories

ol 2 : - > . & . 1 &%

AM2025@ICML | July 14, 2025 Hoover, et al. "Dense Associative Memory with Epanechnikov Energy." NFAM@ICLR 2025.
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< Go to ICLR 2025 Workshop NFAM homepage

Dense Associative Memory with Epanechnikov energy

Benjamin Hoover, Krishna Balasubramanian, Dmitry Krotov, Parikshit Ram

AM2025@ICML | July 14, 2025
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