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What is Associative Memory?

Association Memory Error Correction
Connect inputs to impose Leverage association to recall Filter corruption to detect
structure on a complex world missing information meaning behind the noise
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Shape+color with
universal meaning
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What does this
picture “smell” like?
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Associative Memory

Content-addressable information storage
systems capable of error correction



Energy-based Associative Memory

Unifies these three ideas via energy minimization

2 A query with missing or 1
31 noisy data evolves toward O
¥ low-energy states
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Can also converge to
manifolds where many
solutions have equally
low energy




Energy-based Associative Memory

Unifies these three ideas via energy minimization

A query with missing or
noisy data evolves toward O
low-energy states

O

Can also converge to
manifolds where many
solutions have equally
low energy

e | ocal minima are called memories.

e Non-linear dynamics of energy decent - the process of
memory recall.

e Association happens through this non-linear dynamics
between the state at t=0 and the final state at convergence.



Hopfield Network
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Update rule for energy decent
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How many memories can we store?

Imagine that memories are random binary vectors
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How many memories can we store?

Imagine that memories are random binary vectors
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Information storage capacity

Our noise is a Gaussian random variable with zero
mean and variance .2
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Information storage capacity

Let's compute the probability of error - bit flip
?

Signlgg f(D—l) + > f(fo f;)]i le
sigﬁal = n(;iZ:eZ .
- de 22 i dy _4* f(D—1)
P — 2%2 — — 2 = < 1(7
(error) \/me / 27’(‘6 9( 3 ) 0
f(D-1) H
F(D—1)> ax $? = (moise? ) = (2n — 3K D"
F(x)=2"
K < Kmax — !

a?(2n — 3)!!



Information storage capacity
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Information storage capacity

Classical Hopfield network n=2

Step O

Energy During Recall
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Information storage capacity

Dense Associative Memory with n=6
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Information storage capacity

What have we learned so far?

e The number of memories K is upper bounded.

e The Memory storage capacity heavily depends on the shape of the energy function
F(-) and the shape of the activation function f(-).

e The sharper the energy peaks around memories — the larger the memory storage

capacity.

Classical Hopfield network Dense Associative Memory
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Image from “A new frontier for Hopfield networks”, Nature Reviews, 2023



General Dense Associative Memory
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Failure of Memory and
Generative Al
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When someone—especially you—reminds
me of that day, | remember that it was you
who told me about the murder, or at least
that's how | remember it. <...> | suppose
you... Or rather, | know that you came
downstairs and told me that you heard it
on the news. | don’t know what time it
happened. There, in that hole, in <Name
of the Place>, it was easy to lose track of
time. <...> | had already been working for
quite a while and was very focused on
what | was doing when you suddenly
Interrupted me, saying that you had heard
something. I'm sure it was you who salid:
“The President has been killed, or rather,
shot—he's been shot.” Then | probably
looked up and asked: “What?” And you
replied: “Kennedy—he was shot.” | said:
“What do you mean” Where”?” And you
said you didn’t know...

Roger Brown  James Kulik

EF Loftus, Memory., 1988
NAS, Biographical Memoirs, 1999



Misremembering is a failure of human memory In
which multiple observed events (training data) blend
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Misremembering leads to
creativity



Diffusion Models

Forward process:
dXt — g th
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Reverse process:
dx; = —g(t)*Vy, log p.(x¢)dt + g(t)dw,

Neural network

so(X,t) = Vx, log pt(x¢)



Diffusion Models

Forward process:

dx; = g(t)dw, Training of neural

B = . network = writing

information into the
Reverse process:

memory
dx; = —g(t)*Vx, log py(x;)dt + g(t)dw,

Reverse process =
attempt of memory
Neural network recall

so(x,t) = Vx, log ps(x¢)



Diffusion Models as DenseAM
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Diffusion Models as DenseAM
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Diffusion Models as DenseAM

1 HXT — Y\lg
T = Ey~ ( — )
p(x 7') y~data (277027-)% exp 52

K
1 1 Ixr — &*113Y def EPM(x,., 71
p(Xr, T) & Z ~ €Xp ( T o2 2) = exp ( — ( ))




Diffusion Iin 2D as an Associative Memory

Training Data: 9 Patterns
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AM-based description of DM
oredicts existence of spurious states
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B.Pham, et al.,Memorization to Generalization: Emergence of Diffusion Models from
Associative Memory Networks, 2025



Diffusion models are Dense
Associative Memories above the
critical memory storage capacity
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Diffusion models are energy-based
Assoclative Memories: neural
network encodes the gradient of
the energy



Conclusions

e Dense Associative Memory perspective on DMs is a
useful theoretical tool.

e Spurious states in DMs are real. They represent a new
phase among generated samples that has been
completely overlooked by the mainstream CS
community.

e Misremembering can be mathematically
conceptualized as a formation of spurious states.

e Emergence of spurious states is the earliest sign of
creativity in DMs.
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