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What is Associative Memory? 

Content-addressable information storage 
systems capable of error correction 



Energy-based Associative Memory 



Energy-based Associative Memory 

• Local minima are called memories. 
• Non-linear dynamics of energy decent - the process of 

memory recall. 
• Association happens through this non-linear dynamics 

between the state at t=0 and the final state at convergence.



Hopfield Network Dense Associative Memory 

�i

⇠µi

- dynamical variables (neurons)

- memorized patterns

- number of neurons

K - number of memories
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Update rule for energy decent
rectified polynomial energy function

F (x) =

⇢
xn, x � 0
0, x < 0

(3)

In the case of the polynomial function with n = 2 the network reduces to the standard model of
associative memory [1]. If n > 2 each term in (2) becomes sharper compared to the n = 2 case, thus
more memories can be packed into the same configuration space before cross-talk intervenes.

Having defined the energy function one can derive an iterative update rule that leads to decrease of
the energy. We use asynchronous updates flipping one unit at a time. The update rule is:
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The argument of the sign function is the difference of two energies. One, for the configuration with
all but the i-th units clumped to their current states and the i-th unit in the “off” state. The other one
for a similar configuration, but with the i-th unit in the “on” state. This rule means that the system
updates a unit, given the states of the rest of the network, in such a way that the energy of the entire
configuration decreases. For the case of polynomial energy function a very similar family of models
was considered in [11, 12, 13, 14, 15, 16]. The update rule in those models was based on the induced
magnetic fields, however, and not on the difference of energies. The two are slightly different due to
the presence of self-coupling terms. Throughout this paper we use energy-based update rules.

How many memories can model (4) store and reliably retrieve? Consider the case of random patterns,
so that each element of the memories is equal to ±1 with equal probability. Imagine that the system
is initialized in a state equal to one of the memories (pattern number µ). One can derive a stability
criterion, i.e. the upper bound on the number of memories such that the network stays in that initial
state. Define the energy difference between the initial state and the state with spin i flipped
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where the polynomial energy function is used. This quantity has a mean h�Ei = Nn � (N � 2)n ⇡
2nNn�1, which comes from the term with ⌫ = µ, and a variance (in the limit of large N )

⌃2 = ⌦n(K � 1)Nn�1, where ⌦n = 4n2(2n � 3)!!

The i-th bit becomes unstable when the magnitude of the fluctuation exceeds the energy gap h�Ei
and the sign of the fluctuation is opposite to the sign of the energy gap. Thus the probability that the
state of a single neuron is unstable (in the limit when both N and K are large, so that the noise is
effectively gaussian) is equal to

Perror =

1Z

h�Ei

dxp
2⇡⌃2

e�
x2

2⌃2 ⇡
r

(2n � 3)!!

2⇡

K

Nn�1
e�

Nn�1

2K(2n�3)!!

Requiring that this probability is less than a small value, say 0.5%, one can find the upper limit on
the number of patterns that the network can store

Kmax = ↵nNn�1, (5)
where ↵n is a numerical constant, which depends on the (arbitrary) threshold 0.5%. The case
n = 2 corresponds to the standard model of associative memory and gives the well known result
K = 0.14N . For the perfect recovery of a memory (Perror < 1/N ) one obtains

Kmax
no errors ⇡ 1

2(2n � 3)!!

Nn�1

ln(N)
(6)

For higher powers n the capacity rapidly grows with N in a non-linear way, allowing the network
to store and reliably retrieve many more patterns than the number of neurons that it has, in accord1

with [13, 14, 15, 16]. This non-linear scaling relationship between the capacity and the size of the
network is the phenomenon that we exploit.

1The n-dependent coefficient in (6) depends on the exact form of the Hamiltonian and the update rule.
References [13, 14, 15] do not allow repeated indices in the products over neurons in the energy function,
therefore obtain a different coefficient. In [16] the Hamiltonian coincides with ours, but the update rule is
different, which, however, results in exactly the same coefficient as in (6).
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Our goal in this section is to build the smallest abstraction for Associative

Memory, which at its core is just an energy function . where query

pattern  is a possibly noisy -dimensional, binary pattern and

memory matrix  is our matrix of  stored patterns. 

stores patterns at low energies. To retrieve our stored patterns,we want to

minimize .

Let’s assume an unimplemented, arbitrary energy function and setup a basic

object for a binary AM. All we need to provide is an energy  method,

parameterized by , that is a function of query .

Historically, the Hopfield Network [1] minimizes energy using asynchronous
update rules (where we minimize the query’s energy one randomly selected bit

at a time). We’ll follow that precedent in this notebook since it makes for nicer

visualizations, though fully synchronous update rules (where we minimize the

energy by scanning through all bits sequentially) are also possible. The default

async_update  is simple: for a randomly sampled bit in the query pattern,

compare the energy of that bit when it is flipped and not flipped. Keep the

pattern whose energy is lower.

Converting a noisy query pattern into a stored pattern is a matter of

repeatedly applying the async_update  rule to minimize energy. Because this

process, if run long enough, will “recall” a memory, we call this the

async_recall  method.

Binary Dense Storage

EΞ(σ) ∈ R
σ ∈ {−1, 1}D D

Ξ ∈ {−1, 1}K×D K EΞ(σ)

EΞ(σ)

Ξ σ

σ(t+1)
i

= argmin
b∈{−1,1}

[E (σi = b, σj≠i = σ(t)
j

)] (1)

Tutorial on Associative Memories   
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How many memories can we store? 
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drawn at random from the following distribution:

ωµ
i
=





+1, with probability 1

2

→1, with probability 1
2

(2.4)

With this distribution, it is easy to compute the correlation functions for these variables. The
one-point and two-point correlation functions are given by:

↑ ωµ
i
↓ = 0, ↑ ωµ

i
ωωj ↓ = εµωεij (2.5)

In order to quantify the information storage capacity of this network we will use the following
trick. We will initialize the network in the state corresponding to one of the memories, say ω1

i
,

and let it evolve in time according to the update rule. If the pattern ω1
i

corresponds to a local
minimum, that state must be stable. In other words, the dynamics should not change that initial
state. Mathematically, this means that
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i
f
( D∑
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ωµ
j
ω1j

)

︸ ︷︷ ︸
noise

]
?
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(2.6)

Derivation of the generating function

It is helpful to introduce a new variable

! =
D∑

j=2

ω1j (2.7)

and compute the generating function defined as a statistical average of the exponent of
that variable

M(ϖ) = ↑ eε! ↓ (2.8)

Since ω1
j

are independent for di!erent indices j, the statistical average can be factorized
and computed explicitly

M(ϖ) =
1

2D↑1

∑

ϑ2=±1

∑

ϑ3=±1

...
∑

ϑD=±1

eεϑ2eεϑ3 ...eεϑD = cosh(ϖ)D↑1 (2.9)

All correlation function can be computed by taking derivatives of the generating function.
For instance

↑ !2p
↓ =

ϱ2pM

ϱϖ2p

∣∣∣∣∣
ε=0

= (2p→ 1)!!Dp (2.10)

Assuming that the function f(·) is non-negative, the signal term pushes the argument of the Sign

Imagine that memories are random binary vectors
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→1, with probability 1
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(2.4)

With this distribution, it is easy to compute the correlation functions for these variables. The
one-point and two-point correlation functions are given by:

↑ ωµ
i
↓ = 0, ↑ ωµ

i
ωωj ↓ = εµωεij (2.5)

In order to quantify the information storage capacity of this network we will use the following
trick. We will initialize the network in the state corresponding to one of the memories, say ω1

i
,

and let it evolve in time according to the update rule. If the pattern ω1
i

corresponds to a local
minimum, that state must be stable. In other words, the dynamics should not change that initial
state. Mathematically, this means that
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Derivation of the generating function

It is helpful to introduce a new variable

! =
D∑

j=2

ω1j (2.7)

and compute the generating function defined as a statistical average of the exponent of
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Since ω1
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∣∣∣∣∣
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Assuming that the function f(·) is non-negative, the signal term pushes the argument of the Sign
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Information storage capacity
Our noise is a Gaussian random variable with zero 

mean and variance 
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function towards aligning it with the desired pattern ω1
i
. The noise term generally pushes that

argument away from the desired pattern and in some situations may outweigh the signal term.
Below, we will compute the characteristic magnitude of the noise term and determine when it
becomes dominant and destroys the stability of the target memory. Specifically, we can compute
the mean and variance of the noise term. The mean

→ noise ↑ =

〈 K∑

µ=2

ωµ
i
f
( D∑

j →=i

ωµ
j
ω1j

) 〉
= 0 (2.11)

is equal to zero since index i appears only once in the correlator, see Eq. (2.5). The variance is
given by

→ noise2 ↑ =

〈 K∑

µ=2

ωµ
i
f
( D∑

j →=i

ωµ
j
ω1j

) K∑

ω=2

ωωi f
( D∑

k →=i

ωω
k
ω1
k

) 〉

=
K∑

µ=2

〈
f
( D∑

j →=i

ωµ
j
ω1j

)
f
( D∑

k →=i

ωµ
k
ω1
k

) 〉
i.d.
=

K∑

µ=2

〈
f
( D∑

j →=i

ωµ
j

)
f
( D∑

k →=i

ωµ
k

) 〉

= (K ↓ 1)
〈
f
( D∑

j →=i

ωµ
j

)2〉
,

(2.12)

where we used that → ωµ
i
ωω
i
↑ = εµω and the property that in distribution ωµ

j
ω1
j

i.d.
= ωµ

j
.

Now, it is instructive to restrict our calculation to the class of power energy functions so that

F (·) =
1

n
(·)n, f(·) = (·)n↑1, where n is an integer. (2.13)

In this case, the variance of the noise can be computed exactly (through the generating function)
and is equal to1 [26]:

!2 = → noise2 ↑ = (2n↓ 3)!!KDn↑1 . (2.14)

Figure 2.1: Gaussian probability distribution function. Shaded area indicates the probability of
an error or spin flip.

Now we are ready to compute the probability of an error. The noise term in Eq. (2.6) is a sum
over many independent random variables. When K and D are large, this noise term behaves

1We assume that K is large so that K → 1 ↑ K.
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over many independent random variables. When K and D are large, this noise term behaves

1We assume that K is large so that K → 1 ↑ K.

<latexit sha1_base64="qOs458hvU7EmeQFjn9A13gRRznQ="></latexit>

E = �
KX

µ=1

F
⇣ DX

i=1

⇠µi �i

⌘

<latexit sha1_base64="mpefWrYyBGx0hM0F/h5L3mbVnUA=">AAAB8XicdVDLSsNAFJ3UV62vqks3g0Wom5C0IW0XQlEQlxXsA9tYJtNJO3QyCTMTaSn9CzcuFHHr37jzb5w+BBU9cOFwzr3ce48fMyqVZX0YqZXVtfWN9GZma3tndy+7f9CQUSIwqeOIRaLlI0kY5aSuqGKkFQuCQp+Rpj+8mPnNeyIkjfiNGsfEC1Gf04BipLR0e5kfncIzOLrj3WzOMgsVx7bLUBOnaBdLmlRcp2S50DatOXJgiVo3+97pRTgJCVeYISnbthUrb4KEopiRaaaTSBIjPER90taUo5BIbzK/eApPtNKDQSR0cQXn6veJCQqlHIe+7gyRGsjf3kz8y2snKih7E8rjRBGOF4uChEEVwdn7sEcFwYqNNUFYUH0rxAMkEFY6pIwO4etT+D9pFEzbNd1rJ1c9X8aRBkfgGOSBDUqgCq5ADdQBBhw8gCfwbEjj0XgxXhetKWM5cwh+wHj7BD48kAY=</latexit>

F (x) = xn

CHAPTER 2. DENSE ASSOCIATIVE MEMORY: DISCRETE STATE VECTOR 7

drawn at random from the following distribution:
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With this distribution, it is easy to compute the correlation functions for these variables. The
one-point and two-point correlation functions are given by:

↑ ωµ
i
↓ = 0, ↑ ωµ

i
ωωj ↓ = εµωεij (2.5)

In order to quantify the information storage capacity of this network we will use the following
trick. We will initialize the network in the state corresponding to one of the memories, say ω1

i
,

and let it evolve in time according to the update rule. If the pattern ω1
i

corresponds to a local
minimum, that state must be stable. In other words, the dynamics should not change that initial
state. Mathematically, this means that
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Derivation of the generating function

It is helpful to introduce a new variable

! =
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and compute the generating function defined as a statistical average of the exponent of
that variable

M(ϖ) = ↑ eε! ↓ (2.8)

Since ω1
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are independent for di!erent indices j, the statistical average can be factorized
and computed explicitly
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where we used that → ωµ
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↑ = εµω and the property that in distribution ωµ
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Now, it is instructive to restrict our calculation to the class of power energy functions so that

F (·) =
1

n
(·)n, f(·) = (·)n↑1, where n is an integer. (2.13)

In this case, the variance of the noise can be computed exactly (through the generating function)
and is equal to1 [26]:

!2 = → noise2 ↑ = (2n↓ 3)!!KDn↑1 . (2.14)

Figure 2.1: Gaussian probability distribution function. Shaded area indicates the probability of
an error or spin flip.

Now we are ready to compute the probability of an error. The noise term in Eq. (2.6) is a sum
over many independent random variables. When K and D are large, this noise term behaves

1We assume that K is large so that K → 1 ↑ K.
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approximately as a Gaussian random variable. When the sign of the noise term is the same as
the sign of the signal, the noise term pushes the update in the right direction and does not cause
issues. The problem arises when the noise is large and its sign is opposite to that of the signal.
In this situation, it is possible that the noise can outweigh the signal and flip the spin of interest.
The probability of this event is given by the area under a Gaussian distribution, as shown in
Fig. (2.1):

P (error) =
→∫

f(D↑1)

dx
→

2ω!2
e↑

x2

2!2 =

→∫

f(D→1)
!

dy
→
2ω

e↑
y2

2 = g
(f(D ↑ 1)

!

)
< 1% . (2.15)

Thus, if we want the probability of error be smaller than a certain value the following inequality
must be satisfied :

f(D ↑ 1) > ε!, (2.16)

where ε is a numerical constant independent of K, D, and n (for 1% error ε ↓ 2.576). This
translates into the following bound for the number of memories :

K < Kmax =
1

ε2(2n↑ 3)!!
Dn↑1 . (2.17)

Thus, as long as the number of memories is smaller than Kmax, the network initialized in one of
the memories remains there and the dynamics does not flow away from it. It turns out, this is
precisely the point when associative memory recall breaks. If the number of memories is smaller
than Kmax our network works as intended. Once K exceeds Kmax, reliable recall breaks. This
does not mean that the network becomes useless in that regime. In fact, it instead becomes a
generative model. We will discuss this aspect later.

What have we learned so far?

• The number of memories K is upper bounded.

• The Memory storage capacity heavily depends on the shape of the energy function
F (·) and the shape of the activation function f(·).

• The sharper the energy peaks around memories – the larger the memory storage
capacity.

2.2 Limiting Cases

It is instructive to study a few limiting cases of the general family Eq. (2.1). Each of these models
are frequently studied in the literature and have distinct properties.

The Hopfield Model n = 2. The simplest, and the most popular, example of the Dense
Associative Memory is the Hopfield model. One can obtain it from the general form Eq. (2.1)
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drawn at random from the following distribution:

ωµ
i
=





+1, with probability 1

2

→1, with probability 1
2

(2.4)

With this distribution, it is easy to compute the correlation functions for these variables. The
one-point and two-point correlation functions are given by:

↑ ωµ
i
↓ = 0, ↑ ωµ

i
ωωj ↓ = εµωεij (2.5)

In order to quantify the information storage capacity of this network we will use the following
trick. We will initialize the network in the state corresponding to one of the memories, say ω1

i
,

and let it evolve in time according to the update rule. If the pattern ω1
i

corresponds to a local
minimum, that state must be stable. In other words, the dynamics should not change that initial
state. Mathematically, this means that

ϑ(t+1)
i

= Sign
[
ω1i f

( D∑

j →=i

ω1j ω1j

)
+

K∑

µ=2

ωµ
i
f
( D∑

j →=i

ωµ
j
ω1j

)]

= Sign
[
ω1i f

(
D → 1

)

︸ ︷︷ ︸
signal

+
K∑

µ=2

ωµ
i
f
( D∑

j →=i

ωµ
j
ω1j

)

︸ ︷︷ ︸
noise

]
?
= ω1i

(2.6)

Derivation of the generating function

It is helpful to introduce a new variable

! =
D∑

j=2

ω1j (2.7)

and compute the generating function defined as a statistical average of the exponent of
that variable

M(ϖ) = ↑ eε! ↓ (2.8)

Since ω1
j

are independent for di!erent indices j, the statistical average can be factorized
and computed explicitly

M(ϖ) =
1

2D↑1

∑

ϑ2=±1

∑

ϑ3=±1

...
∑

ϑD=±1

eεϑ2eεϑ3 ...eεϑD = cosh(ϖ)D↑1 (2.9)

All correlation function can be computed by taking derivatives of the generating function.
For instance

↑ !2p
↓ =

ϱ2pM

ϱϖ2p

∣∣∣∣∣
ε=0

= (2p→ 1)!!Dp (2.10)

Assuming that the function f(·) is non-negative, the signal term pushes the argument of the Sign
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approximately as a Gaussian random variable. When the sign of the noise term is the same as
the sign of the signal, the noise term pushes the update in the right direction and does not cause
issues. The problem arises when the noise is large and its sign is opposite to that of the signal.
In this situation, it is possible that the noise can outweigh the signal and flip the spin of interest.
The probability of this event is given by the area under a Gaussian distribution, as shown in
Fig. (2.1):

P (error) =
→∫

f(D↑1)

dx
→

2ω!2
e↑

x2

2!2 =

→∫

f(D→1)
!

dy
→
2ω

e↑
y2

2 = g
(f(D ↑ 1)

!

)
< 1% . (2.15)

Thus, if we want the probability of error be smaller than a certain value the following inequality
must be satisfied :

f(D ↑ 1) > ε!, (2.16)

where ε is a numerical constant independent of K, D, and n (for 1% error ε ↓ 2.576). This
translates into the following bound for the number of memories :

K < Kmax =
1

ε2(2n↑ 3)!!
Dn↑1 . (2.17)

Thus, as long as the number of memories is smaller than Kmax, the network initialized in one of
the memories remains there and the dynamics does not flow away from it. It turns out, this is
precisely the point when associative memory recall breaks. If the number of memories is smaller
than Kmax our network works as intended. Once K exceeds Kmax, reliable recall breaks. This
does not mean that the network becomes useless in that regime. In fact, it instead becomes a
generative model. We will discuss this aspect later.

What have we learned so far?

• The number of memories K is upper bounded.

• The Memory storage capacity heavily depends on the shape of the energy function
F (·) and the shape of the activation function f(·).

• The sharper the energy peaks around memories – the larger the memory storage
capacity.

2.2 Limiting Cases

It is instructive to study a few limiting cases of the general family Eq. (2.1). Each of these models
are frequently studied in the literature and have distinct properties.

The Hopfield Model n = 2. The simplest, and the most popular, example of the Dense
Associative Memory is the Hopfield model. One can obtain it from the general form Eq. (2.1)
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function towards aligning it with the desired pattern ω1
i
. The noise term generally pushes that

argument away from the desired pattern and in some situations may outweigh the signal term.
Below, we will compute the characteristic magnitude of the noise term and determine when it
becomes dominant and destroys the stability of the target memory. Specifically, we can compute
the mean and variance of the noise term. The mean

→ noise ↑ =

〈 K∑

µ=2

ωµ
i
f
( D∑

j →=i

ωµ
j
ω1j

) 〉
= 0 (2.11)

is equal to zero since index i appears only once in the correlator, see Eq. (2.5). The variance is
given by

→ noise2 ↑ =

〈 K∑

µ=2

ωµ
i
f
( D∑

j →=i

ωµ
j
ω1j

) K∑

ω=2

ωωi f
( D∑

k →=i

ωω
k
ω1
k

) 〉

=
K∑

µ=2

〈
f
( D∑

j →=i

ωµ
j
ω1j

)
f
( D∑

k →=i

ωµ
k
ω1
k

) 〉
i.d.
=

K∑

µ=2

〈
f
( D∑

j →=i

ωµ
j

)
f
( D∑

k →=i

ωµ
k

) 〉

= (K ↓ 1)
〈
f
( D∑

j →=i

ωµ
j

)2〉
,

(2.12)

where we used that → ωµ
i
ωω
i
↑ = εµω and the property that in distribution ωµ

j
ω1
j

i.d.
= ωµ

j
.

Now, it is instructive to restrict our calculation to the class of power energy functions so that

F (·) =
1

n
(·)n, f(·) = (·)n↑1, where n is an integer. (2.13)

In this case, the variance of the noise can be computed exactly (through the generating function)
and is equal to1 [26]:

!2 = → noise2 ↑ = (2n↓ 3)!!KDn↑1 . (2.14)

Figure 2.1: Gaussian probability distribution function. Shaded area indicates the probability of
an error or spin flip.

Now we are ready to compute the probability of an error. The noise term in Eq. (2.6) is a sum
over many independent random variables. When K and D are large, this noise term behaves

1We assume that K is large so that K → 1 ↑ K.
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approximately as a Gaussian random variable. When the sign of the noise term is the same as
the sign of the signal, the noise term pushes the update in the right direction and does not cause
issues. The problem arises when the noise is large and its sign is opposite to that of the signal.
In this situation, it is possible that the noise can outweigh the signal and flip the spin of interest.
The probability of this event is given by the area under a Gaussian distribution, as shown in
Fig. (2.1):

P (error) =
→∫

f(D↑1)

dx
→

2ω!2
e↑

x2

2!2 =

→∫

f(D→1)
!

dy
→
2ω

e↑
y2

2 = g
(f(D ↑ 1)

!

)
< 1% . (2.15)

Thus, if we want the probability of error be smaller than a certain value the following inequality
must be satisfied :

f(D ↑ 1) > ε!, (2.16)

where ε is a numerical constant independent of K, D, and n (for 1% error ε ↓ 2.576). This
translates into the following bound for the number of memories :

K < Kmax =
1

ε2(2n↑ 3)!!
Dn↑1 . (2.17)

Thus, as long as the number of memories is smaller than Kmax, the network initialized in one of
the memories remains there and the dynamics does not flow away from it. It turns out, this is
precisely the point when associative memory recall breaks. If the number of memories is smaller
than Kmax our network works as intended. Once K exceeds Kmax, reliable recall breaks. This
does not mean that the network becomes useless in that regime. In fact, it instead becomes a
generative model. We will discuss this aspect later.

What have we learned so far?

• The number of memories K is upper bounded.

• The Memory storage capacity heavily depends on the shape of the energy function
F (·) and the shape of the activation function f(·).

• The sharper the energy peaks around memories – the larger the memory storage
capacity.

2.2 Limiting Cases

It is instructive to study a few limiting cases of the general family Eq. (2.1). Each of these models
are frequently studied in the literature and have distinct properties.

The Hopfield Model n = 2. The simplest, and the most popular, example of the Dense
Associative Memory is the Hopfield model. One can obtain it from the general form Eq. (2.1)



Information storage capacity

Classical Hopfield network n=2
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choosing the function as F (·) = 1
2(·)

2. The energy function can be written as

E = →
1

2

K∑

µ=1

( D∑

i=1

ωµ
i
εi
)2

= →
1

2

D∑

i,j=1

εiTijεj , where Tij =
K∑

µ=1

ωµ
i
ωµ
j
. (2.18)

In this case, according to the general result Eq. (2.17), the memory storage capacity scales linearly
with the size of the network:

Kmax
↑ D . (2.19)

This is the famous Kmax
↓ 0.14D scaling law from the Hopfield’s 1982 paper [7], derived by [15]

using tools from statistical mechanics. While this model is appealing from the perspective of
mathematical elegance and simplicity, this scaling law presents a major practical limitation. In
the end, the hallmark of modern AI applications is the ability to store and process large amounts
of information, a property severely limited by this scaling law.

DenseAM with n = 3. Fortunately, this problem disappears for a more rapidly peaking energy
function (obtained via an alternative activation function). For F (·) = 1

3(·)
3, for example, the

energy is given by

E = →
1

3

K∑

µ=1

( D∑

i=1

ωµ
i
εi
)3

= →
1

3

D∑

i,j,k=1

Tijkεiεjεk, where Tijk =
K∑

µ=1

ωµ
i
ωµ
j
ωµ
k
, (2.20)

and the memory storage capacity scales as:

Kmax
↑ D2, (2.21)

which is significantly faster than linearly.

DenseAM with F (·) = exp(·). It turns out that one can even achieve the exponentially large
memory storage capacity. For exponential function F (·) [27; 28], the number of memories that
this DenseAM can store and retrieve scale as:

Kmax
↑ 2

D
2 , (2.22)

which is more than su!cient for storing any practically relevant amount of information. Note,
this number is the square root of the total number of binary states of the network. Despite its
huge memory storage capacity, this model retains strong error correcting capabilities and has
large size basins of attraction around each stored memories.

2.3 General Dense Associative Memory with Binary State Vari-

ables

Although simple models represented by Eq. (2.1) illustrate the computational capacilities of Dense
Associative Memories, more general energy functions are also frequently studied. For binary

Dense Associative Memory with n=3
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In this case, according to the general result Eq. (2.17), the memory storage capacity scales linearly
with the size of the network:
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↑ D . (2.19)

This is the famous Kmax
↓ 0.14D scaling law from the Hopfield’s 1982 paper [7], derived by [15]

using tools from statistical mechanics. While this model is appealing from the perspective of
mathematical elegance and simplicity, this scaling law presents a major practical limitation. In
the end, the hallmark of modern AI applications is the ability to store and process large amounts
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DenseAM with F (·) = exp(·). It turns out that one can even achieve the exponentially large
memory storage capacity. For exponential function F (·) [27; 28], the number of memories that
this DenseAM can store and retrieve scale as:

Kmax
↑ 2

D
2 , (2.22)

which is more than su!cient for storing any practically relevant amount of information. Note,
this number is the square root of the total number of binary states of the network. Despite its
huge memory storage capacity, this model retains strong error correcting capabilities and has
large size basins of attraction around each stored memories.

2.3 General Dense Associative Memory with Binary State Vari-

ables

Although simple models represented by Eq. (2.1) illustrate the computational capacilities of Dense
Associative Memories, more general energy functions are also frequently studied. For binary
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approximately as a Gaussian random variable. When the sign of the noise term is the same as
the sign of the signal, the noise term pushes the update in the right direction and does not cause
issues. The problem arises when the noise is large and its sign is opposite to that of the signal.
In this situation, it is possible that the noise can outweigh the signal and flip the spin of interest.
The probability of this event is given by the area under a Gaussian distribution, as shown in
Fig. (2.1):

P (error) =
→∫

f(D↑1)

dx
→

2ω!2
e↑

x2

2!2 =

→∫

f(D→1)
!

dy
→
2ω

e↑
y2

2 = g
(f(D ↑ 1)

!

)
< 1% . (2.15)

Thus, if we want the probability of error be smaller than a certain value the following inequality
must be satisfied :

f(D ↑ 1) > ε!, (2.16)

where ε is a numerical constant independent of K, D, and n (for 1% error ε ↓ 2.576). This
translates into the following bound for the number of memories :

K < Kmax =
1

ε2(2n↑ 3)!!
Dn↑1 . (2.17)

Thus, as long as the number of memories is smaller than Kmax, the network initialized in one of
the memories remains there and the dynamics does not flow away from it. It turns out, this is
precisely the point when associative memory recall breaks. If the number of memories is smaller
than Kmax our network works as intended. Once K exceeds Kmax, reliable recall breaks. This
does not mean that the network becomes useless in that regime. In fact, it instead becomes a
generative model. We will discuss this aspect later.

What have we learned so far?

• The number of memories K is upper bounded.

• The Memory storage capacity heavily depends on the shape of the energy function
F (·) and the shape of the activation function f(·).

• The sharper the energy peaks around memories – the larger the memory storage
capacity.

2.2 Limiting Cases

It is instructive to study a few limiting cases of the general family Eq. (2.1). Each of these models
are frequently studied in the literature and have distinct properties.

The Hopfield Model n = 2. The simplest, and the most popular, example of the Dense
Associative Memory is the Hopfield model. One can obtain it from the general form Eq. (2.1)
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Loading cached recall data
CHN failed to retrieve the correct pattern!
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K=2, D=2304

The Classical Hopfield Network (CHN) [1] defines an energy function for this

collection of patterns, putting the -th stored pattern  at a low value of

energy. The CHN energy is a quadratic function described by dot-product

correlations:

We see the familiar equation for CHN energy on the RHS if we expand the

quadratic function, where  is the matrix of symmetric

synapses. Learned patterns  are stored in  via a simple, Hebbian learning

rule.

The CHN can be easily implemented in code via

desired_names = ["eevee", "pichu"]
eevee_pichu_idxs = [poke_names.index(name) for name in desired_names]
Xi = data[eevee_pichu_idxs]

fig, ax = show_im(Xi, figsize=(6,3));
ax.set_title("Stored patterns")
plt.show()

print(f"K={Xi.shape[0]}, D={Xi.shape[1]}")
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ξi)
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1
2

∑
i,j
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class CHN(BinaryAM):
    def energy(
        self, 

K=2 memories stored

K=6 memories stored



Information storage capacity
Dense Associative Memory with n=6

K=100 memories stored
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Image from “A new frontier for Hopfield networks”, Nature Reviews, 2023 
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approximately as a Gaussian random variable. When the sign of the noise term is the same as
the sign of the signal, the noise term pushes the update in the right direction and does not cause
issues. The problem arises when the noise is large and its sign is opposite to that of the signal.
In this situation, it is possible that the noise can outweigh the signal and flip the spin of interest.
The probability of this event is given by the area under a Gaussian distribution, as shown in
Fig. (2.1):

P (error) =
→∫

f(D↑1)

dx
→

2ω!2
e↑

x2

2!2 =

→∫

f(D→1)
!

dy
→
2ω

e↑
y2

2 = g
(f(D ↑ 1)

!

)
< 1% . (2.15)

Thus, if we want the probability of error be smaller than a certain value the following inequality
must be satisfied :

f(D ↑ 1) > ε!, (2.16)

where ε is a numerical constant independent of K, D, and n (for 1% error ε ↓ 2.576). This
translates into the following bound for the number of memories :

K < Kmax =
1

ε2(2n↑ 3)!!
Dn↑1 . (2.17)

Thus, as long as the number of memories is smaller than Kmax, the network initialized in one of
the memories remains there and the dynamics does not flow away from it. It turns out, this is
precisely the point when associative memory recall breaks. If the number of memories is smaller
than Kmax our network works as intended. Once K exceeds Kmax, reliable recall breaks. This
does not mean that the network becomes useless in that regime. In fact, it instead becomes a
generative model. We will discuss this aspect later.

What have we learned so far?

• The number of memories K is upper bounded.

• The Memory storage capacity heavily depends on the shape of the energy function
F (·) and the shape of the activation function f(·).

• The sharper the energy peaks around memories – the larger the memory storage
capacity.

2.2 Limiting Cases

It is instructive to study a few limiting cases of the general family Eq. (2.1). Each of these models
are frequently studied in the literature and have distinct properties.

The Hopfield Model n = 2. The simplest, and the most popular, example of the Dense
Associative Memory is the Hopfield model. One can obtain it from the general form Eq. (2.1)
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DenseAM models, the general form of the energy function is given by

E = →Q
[ K∑

µ=1

F
(
S
[
ωµ,ε

])]
, (2.23)

where the function F (·) is a rapidly growing separation function (e.g., power F (·) = (·)n or
exponent), S[x,x→] is a similarity function (e.g., a dot product or a Euclidean distance), and Q is
a scalar monotone function (e.g., linear or logarithm). There are many possible combinations
of various functions F (·), S(·, ·), and Q(·) that lead to di!erent models from the DenseAM
family [21; 27; 29; 30; 31; 32]. We will discuss the relationship between these binary models and
DenseAMs with continuous states in the next Chapter.

Notebook 2.1: Storage and recovery of memories in DenseAM

In this notebook, we o!er the reader the possibility to experience storage and retrieval of
patterns in DenseAM models. A set of simple Pokemon images can be embedded in the
memory pool of the model. The model can then be queried by a corrupted version of a
memory. The dynamical trajectory of the recall process retrieves the desired memory. By
varying parameter n the reader can experience both successful recovery of the memories
and memory failures, when the recovered image does not correspond to the desired memory.
All these numerical results are to illustrate the general theory discussed in this chapter.

Checkout the notebook as a blog post, a colab notebook or as a raw .ipynb file.

General Dense Associative Memory 
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When someone—especially you—reminds 
me of that day, I remember that it was you 
who told me about the murder, or at least 
that’s how I remember it. <…> I suppose 
you... Or rather, I know that you came 
downstairs and told me that you heard it 
on the news. I don’t know what time it 
happened. There, in that hole, in <Name 
of the Place>, it was easy to lose track of 
time. <…> I had already been working for 
quite a while and was very focused on 
what I was doing when you suddenly 
interrupted me, saying that you had heard 
something. I’m sure it was you who said: 
“The President has been killed, or rather, 
shot—he's been shot.” Then I probably 
looked up and asked: “What?” And you 
replied: “Kennedy—he was shot.” I said: 
“What do you mean? Where?” And you 
said you didn’t know...

Roger Brown      James Kulik

EF Loftus, Memory., 1988 
NAS, Biographical Memoirs, 1999



Misremembering is a failure of human memory in 
which multiple observed events (training data) blend 

together and form novel memories, which are 
different from any of the observed events (training 

data points).

Misremembering leads to 
creativity



Diffusion Models

In DenseAMs, it is well-known that successful memory recall fails as the number of the stored78

data points is increased [4]. Importantly, the transition from successful to unsuccessful memory79

recall is marked by the peculiar phenomenon — the emergence of spurious states, see Fig. (1). Our80

theory provides a specific and empirically verifiable prediction — spurious states must exist in the81

conventional diffusion models, which are trained and run using standard methods. In this paper82

we demonstrate that this is indeed the case. Spurious states emerge at the boundary between the83

memorization and generalization phases, see examples of spurious samples in Fig. (2).84

In accord with previous literature, we find that (1) diffusion models undergo a transition from85

memorization to generalization as the number of training points increases; (2) unlike previous works86

on diffusion models, at the onset of generalization we detect the emergence of spurious patterns,87

which have sizable basins of attraction, but are not memorized data points; and lastly, (3) we provide88

theoretical descriptions distinguishing these spurious states from memorized and generalized patterns89

in terms of energy landscapes. All of these findings suggest a close parallel between diffusion models90

and DenseAMs above the critical storage capacity.91

2 Diffusion Models and Dense Associative Memories92

Given a dataset of i.i.d. samples y → RN drawn from a target data distribution p(y), diffusion models93

are a class of generative models, which aims to approximate p(y) by placing a reversible process94

that maps data to noise and back. The mapping to noise (or forward process) is described by the95

following Itô Stochastic Differential Equation (SDE) [22]:96

dxt = f(xt, t)dt+ g(t)dwt (1)

which transforms the given data distribution (x0 = y) into a simpler one, such as an isotropic97

Gaussian distribution. Here, wt is the standard Wiener process (or Brownian motion) and f(xt, t)98

denotes the drift term that guides the diffusion process, which we will assume to be zero for the most99

part of this paper. Meanwhile, g(t) represents the diffusion coefficient that controls the noise at each100

time step t ↑ T . The reverse process removes the injected noise and is described as101

dxt = [f(xt, t)↓ g(t)2↔xt log pt(xt)]dt+ g(t)dw̄t (2)

where w̄t is the standard Wiener process. To effectively solve this equation, one must reliably102

estimate the score ↔xt log pt(xt) via parameterization of the score as a neural network sω(x, t),103

where ω denotes neural network’s trainable parameters. This network is trained using methods for104

denoising score matching across multiple times steps [51, 52, 53, 22].105

sω(x, t) = ↔xt log pt(xt)

Our theoretical arguments pertain to the idealistic setting in which this neural network is capable of106

learning the true empirical distribution obtained by adding noise to the training data. This limiting107

case is often adopted in theoretical studies of diffusion models, see e.g., [50, 54]. From the practical108

perspective, this is achieved if the neural network is large (over-parametrized) and trained for a long109

time, an assumption that may deviate from the practical use cases. This simplification allows us110

to make a theoretical prediction that diffusion models must generate spurious states. It is highly111

non-trivial that this theoretical prediction can be extrapolated to the regime in which the size of112

the score-modeling neural network is finite and the amount of training data is large. The main113

contribution of our work is the empirical demonstration that this extrapolation is valid, and spurious114

states indeed exist in practically used settings.115

Consider the training data distribution in the variance-exploding setting where f(xt, t) = 0 and116

g(t) = ε. In this case, the marginal probability distribution of new samples can be computed exactly117

as118

p(xt, t) = E
y→data

[
1

(2ϑε2t)
N
2

exp
(
↓ ↗xt ↓ y↗22

2ε2t

)]
(3)

3

Forward process:

Reverse process:

Neural network
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Forward process:
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Neural network

Training of neural 
network = writing 

information into the 
memory

Reverse process = 
attempt of memory 

recall
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works on diffusion models, (3) we provide theoretical descriptions distinguishing these spurious
states from generalized patterns.

2 DIFFUSION MODELS AND DENSE ASSOCIATIVE MEMORY

Given a dataset of i.i.d. samples y 2 RN drawn from an unknown data distribution p(y), diffusion
models are a class of generative models, which aims to approximate p(y) by placing a reversible
process that maps data to noise and back. The mapping to noise (or forward process) is described
by the following Itô Stochastic Differential Equation (SDE) (Song et al., 2021),

dxt = f(xt, t)dt+ g(t)dwt (1)

which transforms the given data distribution (x0 = y) into a simpler one, such as an isotropic
Gaussian distribution. In this context, f(xt, t) denotes the drift term that guides the diffusion process,
which we will now assume to be zero. Meanwhile, g(t) represents the diffusion coefficient that
controls the noise at each time step t. In contrast, the reverse process, removes the injected noise at
each ⌧ = T � t step and it is described as,

dx⌧ = [g(⌧)2rx⌧ log p(x⌧ , ⌧)� f(x⌧ , ⌧)]d⌧ + g(⌧)dw⌧ (2)

where d⌧ is an infinitesimal positive step. To effectively solve this equation, it is crucial to reliably
estimate the score rx log pt(x). This is done via the parameterization of rx log pt(x) as a neural
network s✓(x, t). The learned weights ✓⇤ are obtained using methods for denoising score matching
across multiple times steps (Hyvärinen, 2005; Vincent, 2011; Song & Ermon, 2019). The general
description of this optimization problem, given by Song et al. (2021), is formulated as

✓⇤ = argmin
✓

Et,y,xt

⇥
�(t) · ks✓(xt, t)�rxt log pt(xt|y)k1

⇤
+ C (3)

where t ⇠ U(1, T ) is sampled from the uniform distribution U over the set {1, 2, . . . , T}, y ⇠ p(y)
and xt ⇠ p(xt|y). Here p(xt|y) is the forward process, �(t) is a positive weighting function, and
C is a constant which does not depend on ✓.

Given the training data distribution, in the variance-exploding setting (f(xt, t) = 0, g(⌧) = �
p
⌧ )

the marginal probability distribution of new samples can be computed exactly and is given by

p(x⌧ , ⌧) = Ey⇠data

"
1

(2⇡�2⌧)
N
2

exp
⇣
� kx⌧ � yk22
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by the following Itô Stochastic Differential Equation (SDE) (Song et al., 2021),

dxt = f(xt, t)dt+ g(t)dwt (1)

which transforms the given data distribution (x0 = y) into a simpler one, such as an isotropic
Gaussian distribution. In this context, f(xt, t) denotes the drift term that guides the diffusion process,
which we will now assume to be zero. Meanwhile, g(t) represents the diffusion coefficient that
controls the noise at each time step t. In contrast, the reverse process, removes the injected noise at
each ⌧ = T � t step and it is described as,

dx⌧ = [g(⌧)2rx⌧ log p(x⌧ , ⌧)� f(x⌧ , ⌧)]d⌧ + g(⌧)dw⌧ (2)

where d⌧ is an infinitesimal positive step. To effectively solve this equation, it is crucial to reliably
estimate the score rx log pt(x). This is done via the parameterization of rx log pt(x) as a neural
network s✓(x, t). The learned weights ✓⇤ are obtained using methods for denoising score matching
across multiple times steps (Hyvärinen, 2005; Vincent, 2011; Song & Ermon, 2019). The general
description of this optimization problem, given by Song et al. (2021), is formulated as

✓⇤ = argmin
✓

Et,y,xt

⇥
�(t) · ks✓(xt, t)�rxt log pt(xt|y)k1

⇤
+ C (3)

where t ⇠ U(1, T ) is sampled from the uniform distribution U over the set {1, 2, . . . , T}, y ⇠ p(y)
and xt ⇠ p(xt|y). Here p(xt|y) is the forward process, �(t) is a positive weighting function, and
C is a constant which does not depend on ✓.

Given the training data distribution, in the variance-exploding setting (f(xt, t) = 0, g(⌧) = �
p
⌧ )

the marginal probability distribution of new samples can be computed exactly and is given by

p(x⌧ , ⌧) = Ey⇠data

"
1

(2⇡�2⌧)
N
2

exp
⇣
� kx⌧ � yk22

2⌧�2

⌘#
(4)

Assuming the empirical distribution of the data p(y) = 1
K

KP
µ=1

�(N)(y � ⇠µ), where ⇠µ represents

an individual data point (with data size K), this marginal distribution can be written as

p(x⌧ , ⌧) ⇡
1

K

KX

µ=1

1

(2⇡�2⌧)
N
2

exp
⇣
� kx⌧ � ⇠µk22

2⌧�2

⌘ def⌘ exp
⇣
� EDM(x⌧ , ⌧)

2⌧�2

⌘
(5)

where we also defined the energy EDM of diffusion model, which up to state-independent terms (x
independent terms), is equal to

EDM(x⌧ , ⌧) = �2⌧�2 log

 KX

µ=1

exp
⇣
� kx⌧ � ⇠µk22

2⌧�2

⌘�
(6)

Thus, the backward diffusion process (2) describes the (stochastic) energy descent dynamics in this
energy landscape.

As already observed in Ambrogioni (2024), this energy function (6) is closely related to the class
of models called Dense Associative Memories (DAMs or Modern Hopfield Networks), which are
large memory storage variants of classical Hopfield networks (Krotov & Hopfield, 2016; Krotov,
2023). These networks are energy-based systems, which store and retrieve patterns through network
dynamics (Hopfield, 1982; 1984). In the discrete binary case, the classical Hopfield energy is de-
scribed as E(�) = � 1

2�
>
W�, where W =

PK
µ=1 ⇠

µ(⇠µ)> is the memory matrix which stores

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

works on diffusion models, (3) we provide theoretical descriptions distinguishing these spurious
states from generalized patterns.

2 DIFFUSION MODELS AND DENSE ASSOCIATIVE MEMORY

Given a dataset of i.i.d. samples y 2 RN drawn from an unknown data distribution p(y), diffusion
models are a class of generative models, which aims to approximate p(y) by placing a reversible
process that maps data to noise and back. The mapping to noise (or forward process) is described
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patterns ⇠µ ⇠ pdata through Hebbian learning, and � is a binary state vector (�i = ±1), initialized
as a query to the system. Although mathematically elegant, the classical Hopfield network can only
store a small number of patterns (⇡ 0.14N in the case of random uncorrelated patterns) and conse-
quently, often recalls false or spurious states (Amit et al., 1985; Abu-Mostafa & St. Jacques, 1985)
if loaded with a larger number of data points.

In contrast, the core idea behind DAMs is to modify the energy function so that it peaks sharper
around the intended memory patterns. These new networks can store and retrieve a much larger
number of memories, which scales super-linearly (and possibly exponentially) in the size of the
network (Krotov & Hopfield, 2016; Demircigil et al., 2017). Of particular interest here is the DAM
model studied in Saha et al. (2023) (see also Millidge et al. (2022)), with the energy function given
as

EAM(x) = ���1 log

 KX

µ=1

exp
⇣
� �kx� ⇠µk22

⌘�
(7)

where � is the inverse “temperature”, which controls the steepness of the energy landscape around
memories ⇠µ.

A direct comparison of the energy formulas (6) and (7) makes it clear that there is a close connec-
tion between these two frameworks (Ambrogioni, 2024; Hoover et al., 2023b). The data points in
the diffusion model framework play the same role as the memories in the associative memory for-
mulation. The variance of the noise added during the forward diffusion process (1) plays the role
of the effective temperature ��1 in associative memory. Finally, the reverse denoising process (2)
corresponds to memory retrieval dynamics.

Despite these similarities, the two systems described above have important differences. In typical
associative memory tasks, the inverse temperature � is kept fixed (and is typically large). At the
same time, the diffusion energy EDM(x⌧ , ⌧) describes an intrinsically non-equilibrium system —
the effective temperature explicitly depends on time. Notice, however, that since the reverse process
equation (2) is guaranteed to invert the forward noise injection step (1), the fixed points of the reverse
process are guaranteed to coincide with the original data points. The same statement is true about
the DAM retrieval dynamics — for sufficiently large values of � all the fixed points correspond to
memories. Thus, although there might be differences in dynamical trajectories for gradient descent
in energy equations (6) and (7), their fixed points must be the same1.

There also exist high-level differences between these two systems pertaining to their use cases. As-
sociative memories are typically used for retrieving stored point-like memories. Diffusion models,
on the other hand, are commonly used for generating new samples, which live on (low-dimensional)
manifolds of the data. How can the two systems that seem so different be related by the shared
mathematical description — equations (6) and (7)?

The core message of our paper is that the manifolds of the data in diffusion models emerge from
the point-like memory storing systems, like associative memories, in the limit when the associative
memories are overloaded with data above the critical memory capacity. In this regime, distinct basins
of attraction corresponding to separate memories merge, forming the manifolds of the data. At the
boundary of this transition, a separate “phase” corresponding to spurious states (see Figure 1 and
Figure 3), which is ubiquitous in associative memories around the critical memory load, appears and
signals the onset of generalization. Typically, DAMs have an exponentially large memory storage
capacity (in the number of neurons N ) for uncorrelated patterns. However, in the cases of real data,
due to the high correlation of samples, the critical memory load is much lower than the exponentially
large capacity of uncorrelated data, a well-known fact in associative memories Cortes et al. (1987);
Gutfreund (1988); Krogh & Hertz (1988); Kanter & Sompolinsky (1987); Van Hemmen (1997).

3 MEMORIZATION-TO-GENERALIZATION TRANSITION

To characterize the memorization-to-generalization transition, we focus on the model’s capacity to
generate new samples while still retaining some degree of its ability to replicate memorized data. In

1We remind the reader that time ⌧ runs backwards during the denoising step. Thus, the fixed points that we
discuss here correspond to ⌧ = 0.
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Figure 1: A simple illustration depicting the change in the energy landscape as the size of the training
dataset is increased. In the small data regime, the model memorizes the training data points as local
minima of the energy. When the amount of training data exceeds the memory capacity of the model,
spurious patterns are formed and training data points are no longer energy minima. Subsequent
increase of the training set size leads to the generalization phase, which is defined by the formation
of continuous manifold of the low energy states.

Recent works [33, 34, 35] have begun establishing theoretical connections between DenseAMs and37

generative diffusion models, offering a foundation for bridging the two fields. Specifically, it was38

shown that the logarithm of the probability of the generated samples in diffusion models can be39

interpreted as the energy function of a commonly used DenseAM model with the softmax activation40

function. This makes it possible to apply theoretical tools developed for associative memory to better41

understand the computational properties of diffusion models.42

A possible key that can further bridge these two systems and highlight the properties of the43

memorization-to-generalization transition in diffusion models is the phenomenon of spurious pat-44

terns. Historically considered as detrimental to pattern recall [36, 37, 38], spurious patterns can be45

interpreted as combinations or interpolations of stored patterns, hinting at the network’s ability to syn-46

thesize new patterns from existing training data. This blending of fundamental memories resembles47

the generalization process in generative models, where learned representations are used to generate48

novel outputs. In this way, spurious patterns offer a fascinating framework for exploring the balance49

between memorization — where models store exact patterns from training data — and generalization,50

where they use underlying features to create genuinely new samples [39]. Studying the conditions51

under which spurious patterns emerge and how they contribute to the network’s behavior can thus52

shed light on generalization in both associative memory and contemporary generative models.53

Previous works have explored memorization in generative models through various approaches.54

For instance, [40, 41] proposed general methods to measure memorization, while [30, 31, 42]55

examined the memorization capacity in diffusion models as a function of the size of the training56

data. Other works have focused on understanding generalization, such as the theoretical estimates57

of the generalization gap [43], and the spectral analyses [44, 45, 46]. A recent study [47] proposed58

that generalization in diffusion models arises as a result of the limited expressive power of the59

underlying neural network that predicts the score. Another study [48] explored memorization through60

the relationship between the dimensionalities of the ground-truth manifold and the manifold that is61

learned by the model. Meanwhile, [49] explored the evolution of the generated density as a function62

of the training time to provide an analysis on how mode collapse occurs and leads to the loss of63

diversity in the generated density. Additionally, [50] studied the dynamical regimes of diffusion64

models which help elucidate aspects of generalization. Although these studies shed some light65

on memorization and generalization, they do not fully explore the model’s behaviour during the66

transition between these two phases.67

Contributions. Most of the mentioned works on memorization-to-generalization transition tackled68

it in a generalization-centric fashion. Namely, the memorization phenomenon is typically viewed as a69

“small side effect” of the diffusion models. In our work we adopt a complimentary approach. From70

the beginning, we cast the diffusion modeling pipeline into the associative memory framework. The71

training phase of the diffusion model is conceptualized as writing into the memory operation. The72

generation phase is viewed as an attempt of memory recall. This recall can be successful, resulting in73

the retrieval of training samples (memorization), or unsuccessful, resulting in the generation of new74

previously unseen samples (generalization). Thus, according to this theory, generalization (creation75

of genuinely new samples) is a failure of memory recall. This point of view allows us to apply theory76

developed in DenseAMs for analyzing the memorization-to-generalization transition.77
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Conclusions
Dense Associative Memory perspective on DMs is a 
useful theoretical tool.  
Spurious states in DMs are real. They represent a new 
phase among generated samples that has been 
completely overlooked by the mainstream CS 
community.   
Misremembering can be mathematically 
conceptualized as a formation of spurious states.  
Emergence of spurious states is the earliest sign of 
creativity in DMs. 
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